
AREGEX(3am) GNU Awk Extension Modules AREGEX(3am)

NAME
aregex - approximate (fuzzy) string matching with regular expressions

SYNOPSIS
@load "aregex"

success = amatch(str, regex [, cost|costs [, submatches]])

DESCRIPTION
The TRE library (ref. below) provides approximate matching regex capabilities. A match between two
strings that differ in some number of characters will be found when the cost of character insertions, dele-
tions and substitutions does not exceed some specified maximum cost. For example,

"abcdef"

"abcxdef" # one insertion

"abdef" # one deletion

"abxdef" # one substitution

The cost of the match (the Levenshtein distance between strings) can be reported. This Gawk extension
provides an interface with the tre_regaexec() function in the TRE library, permitting the setting of all possi-
ble parameters for that function, and returning all possible information about a match.

Function summary

A single function, amatch() is provided, modeled on the Gawk match() function:

amatch(str , regex [, cost|costs [, submatches]])

This function takes two mandatory string arguments, and two optional arguments. regex is an extended

regular expression (or plain string) to be matched against string str. Note that the regular expression regex

is bounded by double-quotes, not by the usual Gawk slashes.

Setting approximate match costs

With only two arguments, the default maximum cost for the approximate match is set to 5 (and other costs
are set as below). The maximum cost may also be set by the user via an optional third argument: either an
integer (cost), or a member of a one-dimensional array (costs) indexed by "max_cost". Setting maxi-
mum cost to 0 forces an exact regular expression match, as with Gawk’s match(). Other members of the
costs array with appropriate index values will set the parameters of the regaparams_t structure used by
tre_regaexec():

Array index Parameter Def val Meaning

============ =========== ======= =====================

"cost_ins" .cost_ins 1 Cost of one insertion

"cost_del" .cost_del 1 Cost of one deletion

"cost_subst" .cost_subst 1 Cost of one substitution

"max_cost" .max_cost 5 Max. cost

"max_del" .max_del 5 Max. number of deletions

"max_ins" .max_ins 5 Max. number of insertions

"max_subst" .max_subst 5 Max. number of substitutions

"max_err" .max_err 5 Max. number of ins+del+subst

If the array costs is provided but contains none of the above indexes, the default values are used.

Return value

The amatch() function returns 1 on a successful match, 0 on a failure to match and -1 if regex is invalid
(with TRE’s error message in ERRNO) .

Obtaining match summary data

If a third array argument is provided to amatch(), and a match was successful, information about the
match is returned via (clearing and) filling members of the costs array with these indexes:

Array index Meaning

============ ==

"cost" Total cost of the match (Levenshtein distance)

Free Software Foundation Nov 24 2018 1

AREGEX(3am) GNU Awk Extension Modules AREGEX(3am)

"num_ins" Total number of insertions

"num_del" Total number of deletions

"num_subst" Total number of substitutions

Obtaining parenthetical submatches

If an array (or empty Gawk variable symbol) is provided as the fourth argument , and a match is success-
ful, the array will be cleared and filled with submatches corresponding to the parenthetical sub-expression
in regex, with indexes 1...n, up to a maximum of 20. The array member indexed by 0 will be the portion of
str matched by the whole of regex.

A note on bytes and characters: While the amatch() function is roughly equivalent to the Gawk match()

function, submatches are not returned as in match(), e.g. via [i,“start”] position and [i,“length”] (see
Gawk man page). Instead only the literal substring for each parenthetical match is given. Gawk is multi-
byte aware, and match() works in terms of characters, not bytes, but TRE is byte-based, not character-
based. Using the wchar_t versions of TRE functions cannot help if the input is a mix of single and multi-
byte characters. A simple Gawk routine must be used on the output array (submatches), if positions and
lengths of the substrings are needed. E.g.:

print "i", "substring", "posn", "length"

p = 1

for (i = 1; i < length(submatches); i++) {

idx = index(substr(str, p), submatches[i])

len = length(out[i])

print i, submatches[i], idx+p-1, len

p = p + idx + len

}

EXAMPLE
@load "aregex"

BEGIN {

str = "abcdfbc"

regex = "^a(bc)d()(f)$"

costs["max_cost"] = 6

costs["cost_ins"] = 2

if (amatch(str, regex, costs, submatches)>0)

print costs["cost"], submatches[1]

}

SEE ALSO
The Gawk extension lib: https://sourceforge.net/projects/gawkextlib/ and TRE library: https://lau-
rikari.net/tre/

AUTHORS
Cam Webb <cw@camwebb.info>, @laurikari for the TRE library, the gawkextlib authors

COPYING PERMISSIONS
Copyright © 2018, the Free Software Foundation, Inc.

Copyright © 2018, Campbell O. Webb

Permission is granted to make and distribute verbatim copies of this manual page provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual page under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permis-
sion notice identical to this one.

Permission is granted to copy and distribute translations of this manual page into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a trans- la-
tion approved by the Foundation.

Free Software Foundation Nov 24 2018 2

