
XML Processing With gawk

A User’s Guide for the XML extension of GNU Awk
Edition 1.2

February, 2017

Jürgen Kahrs with contributions from
Stefan Tramm, Manuel Collado and Andrew Schorr

Published by:

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1335 USA
Phone: +1-617-542-5942
Fax: +1-617-542-2652
Email: gnu@gnu.org
URL: http://www.gnu.org/

Copyright (C) 2000–2002, 2004–2007, 2014, 2017 Free Software Foundation, Inc.

This is Edition 1.2 of XML Processing With gawk, for the 1.0.4 (or later) version of the
XML extension of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU General Public
License”, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

a. The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual.”

mailto:gnu@gnu.org
http://www.gnu.org/

i

Table of Contents

Preface . 1
Foreword to Edition 0.3 . 2
Foreword to Edition 1.2 . 3

1 AWK and XML Concepts . 5
1.1 How does XML fit into AWK’s execution model ? 5
1.2 How to traverse the tree with gawk . 8
1.3 Looking closer at the XML file . 9

2 Reading XML Data with POSIX AWK 11
2.1 Steve Coile’s xmlparse.awk script . 11
2.2 Jan Weber’s getXML script . 15
2.3 A portable subset of gawk-xml . 17

2.3.1 Converting a script from gawk-xml into portable subset . . . 17
2.3.2 Converting a script from portable subset into gawk-xml . . . 18

3 XML Core Language Extensions of gawk 19
3.1 Checking for well-formedness . 19
3.2 Printing an outline of an XML file . 20
3.3 Pulling data out of an XML file . 21
3.4 Character data and encoding of character sets 23
3.5 Dealing with DTDs . 26
3.6 Sorting out all kinds of data from an XML file 28

4 Some Convenience with the xmllib library . . . 31
4.1 Introduction Examples . 31
4.2 Main features . 32

Character Data (CDATA) . 33
Start- and End-elements (SE, EE, PATH, ATTR[]) 33
Comments (CM) . 33
Processing Instructions (PI) . 33
Real Character Data (XmlCDATA) . 33
grep function . 34
XmlStartElement and XmlEndElement functions 34
XmlPathTail function . 34
XmlTraceAttr function . 34
Simple String manipulation functions . 34
Minor Issues . 35

4.3 Usage of xmllib.awk . 35
Ad hoc Queries (grep-like tools) . 36
Formatter and Converter (sed-like tools) . 36
Comparison to XSLT . 37

ii XML Processing With gawk

5 DOM-like access with the xmltree library . . . 41

6 Problems from the newsgroups
comp.text.xml and comp.lang.awk 43
6.1 Extract the elements where i="Y" . 43
6.2 Convert XMLTV file to tabbed ASCII . 44
6.3 Finding the minimum value of a set of data . 46
6.4 Updating DTD to agree with its use in doc’s 48
6.5 Working with XML paths . 48

7 Some Advanced Applications 51
7.1 Copying and Modifying with the xmlcopy.awk library script . . . 51
7.2 Reading an RSS news feed . 53
7.3 Using a service via SOAP . 56
7.4 Loading XML data into PostgreSQL . 62
7.5 Converting XML data into tree drawings . 67
7.6 Generating a DTD from a sample file . 70
7.7 Generating a recursive descent parser from a sample file 73
7.8 A parser for Microsoft Excel’s XML file format 78

8 Reference of XML features . 81
8.1 XML features built into the gawk interpreter 81

8.1.1 XMLDECLARATION: integer indicates begin of document 81
8.1.2 XMLMODE: integer for switching on XML processing 81
8.1.3 XMLSTARTELEM: string holds tag upon entering element 82
8.1.4 XMLATTR: array holds attribute names and values 82
8.1.5 XMLENDELEM: string holds tag upon leaving element 83
8.1.6 XMLCHARDATA: string holds character data 83
8.1.7 XMLPROCINST: string holds processing instruction target . . . 83
8.1.8 XMLCOMMENT: string holds comment . 84
8.1.9 XMLSTARTCDATA: integer indicates begin of CDATA 84
8.1.10 XMLENDCDATA: integer indicates end of CDATA 84
8.1.11 LANG: env variable holds default character encoding 84
8.1.12 XMLCHARSET: string holds current character set 85
8.1.13 XMLSTARTDOCT: root tag name indicates begin of DTD . . . 85
8.1.14 XMLENDDOCT: integer indicates end of DTD 86
8.1.15 XMLUNPARSED: string holds unparsed characters 86
8.1.16 XMLERROR: string holds textual error description 86
8.1.17 XMLROW: integer holds current row of parsed item 86
8.1.18 XMLCOL: integer holds current column of parsed item 86
8.1.19 XMLLEN: integer holds length of parsed item 86
8.1.20 XMLDEPTH: integer holds nesting depth of elements 86
8.1.21 XMLPATH: string holds nested tags of parsed elements 87
8.1.22 XMLENDDOCUMENT: integer indicates end of XML data 87
8.1.23 XMLEVENT: string holds name of event . 87
8.1.24 XMLNAME: string holds name assigned to XMLEVENT 87

iii

8.2 gawk-xml Core Language Interface Summary 88
8.2.1 Verbose Interface - One dedicated predefined variable
for each event class: XMLeventname . 88

8.2.2 Concise Interface - Reduced set of
variables shared by all events . 88

8.3 xmllib . 90
8.4 xmlbase . 91

NAME . 91
USAGE . 91
DESCRIPTION . 91
NOTES . 91
LIMITATIONS . 91

8.5 xmlcopy . 92
NAME . 92
USAGE . 92
DESCRIPTION . 92

Token reconstruction . 92
Token modification . 92

NOTES . 92
LIMITATIONS . 92

8.6 xmlsimple . 93
NAME . 93
USAGE . 93
DESCRIPTION . 93

Short token variable names . 93
Collecting character data . 94
Whitespace handling . 94
Record ancestors information . 94
Path related functions . 94
Grep-like facilities . 95

NOTES . 95
LIMITATIONS . 95

8.7 xmltree . 96
NAME . 96
USAGE . 96
DESCRIPTION . 96

Automatic storage of the element tree . 96
Processing the tree in the END clause . 96
Printing tree fragments . 96
Selecting tree fragments . 97
The path expression language . 97

NOTES . 98
LIMITATIONS . 98

8.8 xmlwrite . 99
NAME . 99
USAGE . 99
DESCRIPTION . 99

Output file and mode . 99

iv XML Processing With gawk

XML prologue . 100
Processing Instructions and Comments . 100
Elements and attributes . 100
Character data . 100
Unparsed markup . 101
Higher level convenience functions . 101
Integration with the XML extension . 101

NOTES . 101
LIMITATIONS . 101

9 Reference of Books and Links 103
9.1 Good Books . 103
9.2 Links to the Internet . 104

Appendix A GNU Free Documentation License . . 105

Index . 113

Preface 1

Preface

In June of 2003, I was confronted with some textual configuration files in XML format and
I was scared by the fact that my favorite tools (grep and awk) turned out to be mostly
useless for extracting information from these files. It looked as if AWK’s way of processing
files line by line had to be replaced by a node-traversal of tree-like XML data. For the first
implementation of an extended gawk, I chose the expat library to help me reading XML
files.

With a little help from Stefan Tramm I went on selecting features and implemented what
is now called XMLgawk over the Christmas Holidays 2003. In June 2004, Manuel Collado
joined us and started collecting his comments and proposals for the extension. Manuel also
wrote a library for reading XML files into a DOM-like structure.

In Septermber 2004, I wrote the first version of this book. Andrew Schorr flooded my
mailbox with patches and suggestions for changes. His initiative pushed me into starting the
SourceForge project. This happened in March 2005 and since then, all software changes go
into a CVS source tree at SourceForge (thanks to them for providing this service). Andrew’s
urgent need for a production system drove development in early 2005. Significant changes
were made:

1. Parsing speed was doubled to increase efficiency when reading large data bases.

2. Manuel suggested and Andrew implemented some simplifications in user-visible pat-
terns like XMLEVENT and XMLNAME.

3. Andrew encapsulated XMLgawk into a gawk extension, loadable as a dynamic library
at runtime. This also allowed for building gawk without the XML extension. That’s
how the -l option and @load were introduced.

4. Andrew cleaned up the autotool mechanism (Makefile.am etc.) and found an installa-
tion mechanism which allows an easy and collision-free installation in the same directory
as Arnold’s GNU Awk. He also made Arnold’s igawk obsolete by implementing the -i
option. April 2005 saw the Alpha release of xgawk, as a branch of gawk-3.1.4.

In August 2005, Hirofumi Saito held a presentation at the Lightweight Language Day
and Night (http://ll.jus.or.jp/2005/files/lldn_awk_2005.pdf) in Japan. His little
slideshow demonstrated the importance of multibyte characters in any modern program-
ming language. Hirofumi Saito also did the localization of our source code for the Japanese
language. Kimura Koichi reported and fixed some problems in handling of multibyte char-
acters. He also found ways to get all this running on several flavours of Microsoft Windows.

Meanwhile in Summer 2005, Arnold had released gawk-3.1.5 and I applied all his 219
patches to our CVS tree over the Christmas Holidays 2005. Andrew applied some more
bug fixes from the GNU mailing archive and so the current Beta release of xgawk-3.1.5 is
already a bit ahead of Arnold’s gawk-3.1.5.

Jürgen Kahrs
Bremen, Germany
April, 2006

http://ll.jus.or.jp/2005/files/lldn_awk_2005.pdf
http://ll.jus.or.jp/2005/files/lldn_awk_2005.pdf

2 XML Processing With gawk

Foreword to Edition 0.3

In August 2006, Arnold and friends set up a mirror of Arnold’s source tree as a CVS repos-
itory at Savannah (http://savannah.gnu.org/projects/gawk). It is now much easier for
us to understand recent changes in Arnold’s source tree. We strive to merge all of them
immediately to our source tree. This merge process has been enormously simplified by a
weekly cron job mechanism (implemented by Andrew) that examines recent activities in
Arnold’s tree and sends an email to our mailing list.

Some more problems and fixes in handling multibyte characters have been reported by
our Japanese friends to Arnold and us. For example, Hirofumi Saito and others forwarded
patches for the half-width katakana characters in character classes in ShiftJIS locale.

Since January 2007, there is a new target valgrind in the top level Makefile. This
feature was implemented for detection of memory leaks in the interpreter while running
the regression test cases. We found small memory leaks in our time and mpfr extension
instantly with this new feature.

March 2007 saw much activity. First we introduced Victor Paesa’s new extension for
the GD library. Then we merged Paul Eggert’s file floatcomp.c (floating point / long
comparison) from Arnold’s source tree. We also merged the changes in regression test cases
and documentation due to changed behaviour in numerical calculations (infinity and not a
number) and formatting of these.

Stefan Tramm held a 5-minute Lightning Talk on xgawk at OSCON 06.

Hirofumi Saito took part in the Lightweight Language Conference 2006.

The new Chapter 2 [Reading XML Data with POSIX AWK], page 11, describes a tem-
plate script getXMLEVENT.awk that allows us to write portable scripts in a manner that is
a mostly compatible subset of the XMLgawk API. Such scripts can be run on any POSIX-
compliant AWK interpreter – not just xgawk.

The new Section 7.1 [Copying and Modifying with the xmlcopy.awk library script],
page 51, describes a library script for making slightly modified copies of XML data.

Thanks to Andrew’s mechanism for systematic reporting of patches applied by Arnold
to his gawk-stable tree, Andrew and I caught up with recent changes in Arnold’s source
tree. As a consequence, xgawk is now based upon the recent official gawk-3.1.6 release.

Jürgen Kahrs
Bremen, Germany
December, 2007

http://savannah.gnu.org/projects/gawk

Preface 3

Foreword to Edition 1.2

In October 2014 the xgawk project has been restructured. The set of gawk extensions has
been splitted. There is now a separate directory and distribution archive for each individual
gawk extension. The SourceForge project name has changed to gawkextlib.

XMLgawk is no longer the name of the whole set of extensions, nor of the individual
XML extension. The XML extension is now called gawk-xml. The xmlgawk name designates
a script that invokes gawk with the XML extension loaded and a convenience xmllib.awk

included.

The 1.2 edition of this manual includes documentation of the companion xml*.awk

libraries. The body of the manual has changed only a little, but has been revised in order
to update obsolete names, references or versions of the related stuff.

Manuel Collado
February, 2017

FIXME: This document has not been completed yet. The incomplete portions have
been marked with comments like this one.

Chapter 1: AWK and XML Concepts 5

1 AWK and XML Concepts

This chapter provides a (necessarily) brief intoduction to XML concepts. For many appli-
cations of gawk XML processing, we hope that this is enough. For more advanced tasks,
you will need deeper background, and it may be necessary to switch to other tools like XSL
processors

1.1 How does XML fit into AWK’s execution model ?

But before we look at XML, let us first reiterate how AWK’s program execution works
and what to expect from XML processing within this framework. The gawk man page
summarizes AWK’s basic execution model as follows:

An AWK program consists of a sequence of pattern-action statements and op-
tional function definitions.
pattern { action statements }
function name(parameter list) { statements }
. . . For each record in the input, gawk tests to see if it matches any pattern in
the AWK program. For each pattern that the record matches, the associated
action is executed. The patterns are tested in the order they occur in the pro-
gram. Finally, after all the input is exhausted, gawk executes the code in the
END block(s) (if any).

A look at a short and simple example will reveal the strength of this abstract description.
The following script implements the Unix tool wc (well, almost, but not completely).

BEGIN { words=0 }

{ words+=NF }

END { print NR, words }

Before opening the file to be processed, the word counter is initialized with 0. Then the
file is opened and for each line the number of fields (which equals the number of words) is
added to the current word counter. After reading all lines of the file, the resulting word
counter is printed as well as the number of lines.

Store the lines above in a file named wc.awk and invoke it with

gawk -f wc.awk datafile.xml

This kind of invocation will work on all platforms. In a Unix environment (or in the
Cygwin Unix-emulation on top of Microsoft Windows) it is more comfortable to store the
script above into an executable file. To do so, write a file named wc.awk, with the first line
being

#!/usr/bin/gawk -f

followed by the lines above. Then make the file wc.wk executable with

chmod a+x wc.awk

and invoke it as

wc.awk datafile.xml

When looking at Figure 1.1 from top to bottom, you will recognize that each line of the
data file is represented by a row in the figure. In each row you see NR (the number of the

6 XML Processing With gawk

current line) on the left and the pattern (the condition for execution) and its action on the
right. The first and last rows represent BEGIN (initialization) and END (finalization).

Input data NR (given) Pattern Action
Before reading undefined BEGIN words=0

Line 1 words+=NF

Line 2 words+=NF

Line 3 words+=NF

Line ... words+=NF

After reading total lines END print NR, words

Figure 1.1: Execution model of an AWK program with ASCII data, proceeding top to
bottom

We could use this script to process any XML file. But the result it yielded would not be
too meaningful to us. When processing XML files, you are not really interested in the num-
ber of lines or words. Take, for example, this XML file, a DocBook file (http://xml.web.
cern.ch/XML/goossens/dbatcern/doc-structure.html#exa.dbgeneral) to be precise.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"

"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd">

<book id="hello-world" lang="en">

<bookinfo>

<title>Hello, world</title>

</bookinfo>

<chapter id="introduction">

<title>Introduction</title>

<para>This is the introduction. It has two sections</para>

<sect1 id="about-this-book">

<title>About this book</title>

<para>This is my first DocBook file.</para>

</sect1>

<sect1 id="work-in-progress">

<title>Warning</title>

<para>This is still under construction.</para>

</sect1>

</chapter>

</book>

Figure 1.2: Example of some XML data (DocBook file)

http://xml.web.cern.ch/XML/goossens/dbatcern/doc-structure.html#exa.dbgeneral
http://xml.web.cern.ch/XML/goossens/dbatcern/doc-structure.html#exa.dbgeneral

Chapter 1: AWK and XML Concepts 7

Reading through this jungle of angle brackets, you will notice that the notion of a
line is not an adequate concept to describe what you see. AWK’s idea of records and
fields only makes sense in a rectangular world of textual data being stored in rows and
columns. This notion is blind to XML’s notion of structuring textual data into markup
blocks (like <title>Introduction</title>), with beginning and ending being marked as
such by angle brackets. Furthermore, XML’s markup blocks can contain other blocks (like
a chapter contains a title and a para). XML sees textual data as a tree with deeply
nested nodes (markup blocks). A tree is a dynamic data structure; some people call it a
recursive structure because a tree contains other trees, which may contain even other trees.
These sub-trees are not numbered (as rows and columns) but they have names. Now that
we have a coarse understanding of the structure of an XML file, we can choose an adequate
way of picturing the situation. XML data has a tree structure, so let’s draw the example
file in Figure 1.2 above as a tree (see Figure 1.3).

book

lang='en'

id='hello-world'

bookinfo2

chapter

id='introduction'

4

title3

title5

para
6

sect1

id='about-this-book'

7

sect1

id='work-in-progress'

10

title
8

para
9

title
11

para

12

Figure 1.3: XML data (DocBook file) as a tree

You can easily see that each markup block is drawn as a node in this tree. The edges in
the tree reveal the nesting of the markup blocks in a much more lucid way than the textual
representation. Each edge indicates that the markup block which has an arrow pointing to
it, is contained in the markup block from which which the edge comes. Such edges indicate
the "parent-child" relationship.

8 XML Processing With gawk

1.2 How to traverse the tree with gawk

Now, what could be the equivalent of a wc command when dealing with such trees of markup
blocks ? We could count the nodes of the tree. You can store and invoke the following script
in the same way as you did for the previous script.

BEGIN { nodes = 0 }

XMLSTARTELEM { nodes ++ }

END { print nodes }

If you invoke this script with the data file in Figure 1.2, the number of nodes will be
printed immediately:

gawk -l xml -f node_count.awk dbfile.xml

12

Notice the similarity between this example script and the original wc.awk which counts
words. Instead of going over the lines, this script traverses the tree and increments the
node counter each time a node is found. After a closer look you will find several differences
between the previous script and the present one:

1. The command line for gawk has an additional parameter -l xml. This is necessary
for loading the XML extension into the gawk interpreter so that the gawk interpreter
knows that the file to be opened is an XML file and has to be treated differently.

2. The node counting happens in an action which has a pattern. Unlike the previous
script (which counted on every line) we are interested in counting the nodes only. The
occurence of a node (the beginning of a markup block) is indicated by the XMLSTARTELEM
pattern.

3. There is no equivalent of the word count here, only the node count.

4. It is not clear in which order the nodes of the tree are traversed. The bookinfo node
and the chapter node are both positioned directly under the book node; but which is
counted first ? The answer becomes clear when we return to the textual representation
of the tree — textual order induces traversal order.

Do you see the numbers near the arrow heads ? These are the numbers indicating traver-
sal order. The number 1 is missing because it is clear that the root node (framed with a bold
line) is visited first. Computer Scientists call this traversal order depth-first (http://en.
wikipedia.org/wiki/Depth-first) because at each node, its children (the deeper nodes)
are visited before going on with nodes at the same level. There are other orders of traversal (
breadth-first (http://en.wikipedia.org/wiki/Breadth-first_search)) but the textual
order in Figure 1.2 enforces the numbering in Figure 1.3.

The tree in Figure 1.3 is not balanced. The very last nodes are nested so deep that
they are printed on the very right of the margin in Figure 1.3. This is not the case for the
upper part of the drawing. Sometimes it is useful to know the maximum depth of such a
tree. The following script traverses all nodes and at each node it compares actual depth
and maximum depth to find and remember the largest depth.

http://en.wikipedia.org/wiki/Depth-first
http://en.wikipedia.org/wiki/Depth-first
http://en.wikipedia.org/wiki/Breadth-first_search

Chapter 1: AWK and XML Concepts 9

@load "xml"

XMLSTARTELEM {

depth++

if (depth > max_depth)

max_depth = depth

}

XMLENDELEM { depth-- }

END { print max_depth }

Figure 1.4: Finding the maximum depth of the tree representation of an XML file with
the script max_depth.awk

If you compare this script to the previous one, you will again notice some subtle differ-
ences.

1. @load "xml" is a replacement for the -l xml on the command line. If the source text
of your script is stored in an executable file, you should start the script with loading all
extensions into the interpreter. The command line option -l xml should only be used
as a shorthand notation when you are working with a one-line command line.

2. The variable depth is not initialized. This is not necessary because all variables in
gawk have a value of 0 if they are used for the first time without a prior initialization.

3. The most important difference you will find is the new pattern XMLENDELEM. This is
the counterpart of the pattern XMLSTARTELEM. One is true upon entering a node, the
other is true upon leaving the node. In the textual representation, these patterns mark
the beginning and the ending of a markup block. Each time the script enters a markup
block, the depth counter is increased and each time a markup block is left, the depth

counter is decreased.

Later we will learn that this script can be shortened even more by using the builtin
variable XMLDEPTH which contains the nesting depth of markup blocks at any point in time.
With the use of this variable, the script in Figure 1.4 becomes one of these one-liners which
are so typical for daily work with gawk.

1.3 Looking closer at the XML file

If you already know the basics of XML terminology, you can skip this section and advance to
the next chapter. Otherwise, we recommend studying the O’Reilly book XML in a Nutshell
(http://www.oreilly.com/catalog/xmlnut3/), which is a good combination of tutorial
and reference. Basic terminology can be found in chapter 2 (XML Fundamentals). If you
prefer (free) online tutorials, then we recommend w3schools (http://www.w3schools.com/
xml/default.asp). See Section 9.2 [Links to the Internet], page 104, for additional valuable
material.

Before going on reading, you should make sure you know the meaning of the following
terms. Instead of leaving you on your own with learning these terms, we will give an informal
and insufficient explanation of each of the terms. Always refer to Figure 1.2 for an example
and consider looking the term up in one of the sources given above.

• Tag: name of a node

• Attribute: variable having a name (lang) and a value (en)

http://www.oreilly.com/catalog/xmlnut3/
http://www.oreilly.com/catalog/xmlnut3/
http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xml/default.asp

10 XML Processing With gawk

• Element: sub-tree, for example bookinfo including title

• Well-Formed: properly nested file; one tree with quoted, tag-wise distinct attributes

• DTD: formal description about which elements and attributes a file contains

• Schema: same use as DTD, but more detailed and formally itself XML (unlike DTD)

• Valid: conforming to a formal specification, usually given as a DTD or a Schema

• Processing Instruction: screwed special-purpose element whose name is "?"; first data
line often is

<?xml version="1.0" encoding="ISO-8859-1"?>

• Character Data: textual data inside an element between the tags

• Mixed Content: element that has character data inside it

• Encoding: name of a mapping between text symbols and byte sequence (ISO-8859-1)

• UTF-8: default encoding of XML; covers all text symbols available, possibly multi-byte

Still reading ? Be warned that these definitions are formally incorrect. They are meant
to get you on the right track. Each ambitious propeller head will happily tear these defini-
tions apart. If you are seriously striving to become an XML propeller head yourself, then
you should not miss reading the original defining documents about the XML technology
(http://www.w3.org/TR/2004/REC-xml-20040204/). The proper playing ground for anx-
ious aspirants is the newsgroup comp.text.xml (news://comp.text.xml). I am glad none
of those propeller heads reads gawk books — they would kill me.

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
news://comp.text.xml

Chapter 2: Reading XML Data with POSIX AWK 11

2 Reading XML Data with POSIX AWK

Some users will try to avoid the use of the new language features described earlier. They
want to write portable scripts; they have to refrain from using features which are not part
of the standardized POSIX AWK (http://www.opengroup.org/onlinepubs/000095399/
utilities/awk.html). Since the XML extension of GNU Awk is not part of the POSIX
standard, these users have to find different ways of reading XML data.

2.1 Steve Coile’s xmlparse.awk script

Implementing a complete XML reader in POSIX AWK would mean that all subtle details
of Unicode encodings had to be handled. It doesn’t make sense to go into such details with
an AWK script. But in 2001, Steve Coile wrote a parser which is good enough if your XML
data consists of simple tagged blocks of ASCII characters. His script is available on the
Internet as xmlparse.awk (ftp://ftp.freefriends.org/arnold/Awkstuff/xmlparser.
awk). The source code of xmlparse.awk is well documented and ready-to-use for anyone
having access to the Internet.

Begin your exploration of xmlparse.awk by downloading it. As of Summer 2007, there
is a typo in the file that has to be corrected before you can start to work with the parser.
Insert a hashmark character (#) in front of the comment in line 342.

wget ftp://ftp.freefriends.org/arnold/Awkstuff/xmlparser.awk

vi xmlparser.awk

342G

i#

ESC

:wq

While you’re editing the parser script, have a look at the comments. This is a well-
documented script that explains its implementation as well as some use cases. For example,
the header summarizes almost all details that a user will need to remember (see Figure 2.1).
There is a negligible inconsistency in the header: The file is really named xmlparser.awk

and not xmlparse.awk as stated in the header. From a user’s perspective, the most impor-
tant constraint to keep in mind is that this XML parser needs a modern variant of AWK.
This means a POSIX compliant AWK; the old Solaris implentation oawk will not be able
to interpret this XML parser script as intended. Invoke the XML parser for the first time
with

awk -f xmlparser.awk docbook_chapter.xml

Compare the output to the original file’s content (see Figure 1.2) and its depiction as a
tree (see Figure 1.3). You will notice that the first column of the output always contains
the type of the items as they were parsed sequentially:

pi xml version="1.0" encoding="UTF-8"

data \n

decl DOCTYPE book PUBLIC "-//OASIS//DTD DocBook..."\n "http://www.oasis-open..."

data \n\n

begin BOOK

attrib id

value hello-world

http://www.opengroup.org/onlinepubs/000095399/utilities/awk.html
http://www.opengroup.org/onlinepubs/000095399/utilities/awk.html
ftp://ftp.freefriends.org/arnold/Awkstuff/xmlparser.awk
ftp://ftp.freefriends.org/arnold/Awkstuff/xmlparser.awk

12 XML Processing With gawk

attrib lang

value en

data \n \n

begin BOOKINFO

data \n

begin TITLE

data Hello, world

end TITLE

... etc. ...

This is in accordance with the guiding principles explained in the header of the parser
script. Note that the description in Figure 2.1 is incomplete. More details will be provided
below.

The script parses the XML data and saves each parsed item in two arrays:

• type[3] indicates the type of the 3rd parsed XML data item. This may be any of

• "error" when an invalid item has been parsed or another error has occurred. In
this case, item[3] contains the text of the error message.

• "begin" when an opening tag has been parsed.

• "end" when a closing tag has been parsed. In the case of type[3] containing
"begin" or "end", item[3] contains the name of the tag.

• "attrib" when an attribute’s name has been parsed.

• "value" when an attribute’s value has been parsed. In the case of type[3] con-
taining "attrib" or "value", item[3] contains the attribute’s name or value.

• "data" when the data between opening and closing tags has been parsed.

• "cdata" when character data has been parsed.

• "comment" when a comment has been parsed.

• "pi" when a processing instruction has been parsed.

• item[3] contains data depending on type[3], as distinguished in the item list above.

While you proceed reading this book, you will notice that the basic idea is similar to
what gawk-xml does. Especially the approach described in Section 8.2 [gawk-xml Core
Language Interface Summary], page 88, as Concise Interface - Reduced set of variables
shared by all events will look familiar. The script as it is was not designed to be a modular
building block. Any application will not simply include the xmlparser.awk file, but copy
it textually and modify the copy. Look into the original script once more and have a closer
look at the final END pattern. You will find suggestions for several useful applications inside
the END pattern.

Chapter 2: Reading XML Data with POSIX AWK 13

##

#

xmlparse.awk - A simple XML parser for awk

#

Author: Steve Coile <scoile@csc.com>

#

Version: 1.0 (20011017)

#

Synopsis:

#

awk -f xmlparse.awk [FILESPEC]...

#

Description:

#

This script is a simple XML parser for (modern variants of) awk.

Input in XML format is saved to two arrays, "type" and "item".

#

The term, "item", as used here, refers to a distinct XML element,

such as a tag, an attribute name, an attribute value, or data.

#

The indexes into the arrays are the sequence number that a

particular item was encountered. For example, the third item’s

type is described by type[3], and its value is stored in item[3].

#

The "type" array contains the type of the item encountered for

each sequence number. Types are expressed as a single word:

"error" (invalid item or other error), "begin" (open tag),

"attrib" (attribute name), "value" (attribute value), "end"

(close tag), and "data" (data between tags).

#

The "item" array contains the value of the item encountered

for each sequence number. For types "begin" and "end", the

item value is the name of the tag. For "error", the value is

the text of the error message. For "attrib", the value is the

attribute name. For "value", the value is the attribute value.

For "data", the value is the raw data.

#

WARNING: XML-quoted values ("entities") in the data and attribute

values are *NOT* unquoted; they are stored as-is.

#

###

Figure 2.1: Usage explained in the header of xmlparser.awk

14 XML Processing With gawk

1. By checking for the occurence of an error with

if (type[idx] == "error") {

...

}

it is quite easy to implement a script that checks for well-formedness of some XML
data.

2. Several attempts have been made to introduce a simplified XML that is easier to parse
by shell scripts. Simplication of the XML and output in a convenient line-by-line
format can be implemented with the following code fragment inside an END pattern. It
demonstrates how to go through all parsed items sequentially and handle each of the
types appropriately.

for (n = 1; n <= idx; n += 1) {

if (type[n] == "attrib") {

} else if (type[n] == "begin") {

} else if (type[n] == "cdata") {

} else if (type[n] == "comment") {

} else if (type[n] == "data") {

} else if (type[n] == "decl") {

} else if (type[n] == "end") {

} else if (type[n] == "error") {

} else if (type[n] == "pi") {

} else if (type[n] == "value") {

}

}

3. One application of the framework just mentioned is an outline script like the one in
Figure 3.2. Producing an outline output like the one in Figure 3.1 is a matter of a few
lines in AWK if you modify the xmlparser.awk script. Notice that this is done after
the complete XML data has been read. So, at the moment of processing, the complete
XML data is somehow saved in AWK’s memory, imposing some limit on the size of the
data that can be processed.

XMLDEPTH=0

for (n = 1; n <= idx; n += 1) {

if (type[n] == "attrib") { printf(" %s=", item[n])

} else if (type[n] == "value") { printf("’%s’", item[n])

} else if (type[n] == "begin") { printf("\n%*s%s", 2*XMLDEPTH,"", item[n])

XMLDEPTH ++

} else if (type[n] == "end") { XMLDEPTH -- }

}

If you compare the output of this application with Figure 3.1 you will notice only two
differences. The first is the newline character before the very first tag; the second is the
names of the tags. The xmlparser.awk script saves the names of the tags in uppercase
letters, the exact tag name cannot be revovered without changing the internals of the
XML parsing mechanism.

Chapter 2: Reading XML Data with POSIX AWK 15

2.2 Jan Weber’s getXML script

In 2005, Jan Weber posted a similar XML parser to the newsgroup comp.lang.awk (news://
comp.lang.awk). You can use Google to search for the script getXML and copy it into a
file. Unfortunately, Jan tried to make the script as short as possible and often put several
statements on one line. Readability of the script has suffered severely and if you intend to
analyse the script, be prepared that some editing may be necessary to understand it. Again,
while you’re editing the parser script, have a look at the comments. Jan has commented
the one central function of the script from a user’s perspective as follows (see Figure 2.2).
The basic approach was taken over from the xmlparser.awk script. But there were several
constraints Jan tried to satisfy in writing his XML parser:

1. The function getXML allows to read multiple XML files in parallel.

2. As a consequence, each XML event happens upon returning from the getXML function,
similar to the getline mechanism of AWK (see Figure 2.3). Furthermore, the user
application reads files in the BEGIN action of the AWK script, not in the END action.

3. The exact names of tags and attributes are preserved, no change in case is done by the
XML parser.

4. Parameter passing resembles the approach described in Section 8.2 [gawk-xml Core
Language Interface Summary], page 88, as Concise Interface - Reduced set of variables
shared by all events much more closely. Most importantly, attribute names and values
are passed along with the tag they belong to. So, granularity of events is more coarse
and user-friendly.

5. While the xmlparser.awk script stored the complete XML data into two arrays during
the parsing process, getXML.awk passes one XML event at a time back to the calling
application, avoiding the unwanted waste of memory. This means, parsing large XML
files becomes possible (although it doesn’t make too much sense).

6. This XML parser runs with the nawk implementation of the AWK language that comes
with the Solaris Operating System. As a consequence, this XML parser is probably
the most portable of all parsers described in this book.

Again, we will demonstrate the usage of this XML parser by implementing an outline
script like the one in Figure 3.2. Change the file getXML and replace the existing BEGIN

action with the script in Figure 2.3. Invoke the new outline parser for the first time with

awk -f getXML docbook_chapter.xml

Compare the output to the original file’s content (see Figure 1.2), its depiction as a tree
(see Figure 1.3) and to the output of the original outline tool that comes with the expat
parser (see Figure 3.1). The result is almost identical to Figure 3.1, except for one minor
detail: The very first line is a blank line here.

news://comp.lang.awk
news://comp.lang.awk

16 XML Processing With gawk

##

getXML(file, skipData): # read next xml-data into XTYPE,XITEM,XATTR

Parameters:

file -- path to xml file

skipData -- flag: do not read "DAT" (data between tags) sections

External variables:

XTYPE -- type of item read, e.g. "TAG"(tag), "END"(end tag), "COM"(comment), "DAT"(data)

XITEM -- value of item, e.g. tagname if type is "TAG" or "END"

XATTR -- Map of attributes, only set if XTYPE=="TAG"

XPATH -- Path to current tag, e.g. /TopLevelTag/SubTag1/SubTag2

XLINE -- current line number in input file

XNODE -- XTYPE, XITEM, XATTR combined into a single string

XERROR -- error text, set on parse error

Returns:

1 on successful read: XTYPE, XITEM, XATTR are set accordingly

"" at end of file or parse error, XERROR is set on error

Private Data:

_XMLIO -- buffer, XLINE, XPATH for open files

##

Figure 2.2: Usage of Jan Weber’s getXML parser function

But some implementation details are noteworthy. Here, granularity of items is different:
All attributes are reported along with their tag item. This results from a design decision:
The getXML function uses several variables to pass larger amounts of data back to the caller.
Finally a detail that did not become so obvious in this example. Notice the second parameter
of the getXML function (skipData). Jan introduced an option that allows skipping textual
data in between tags (mixed content).

#!/usr/bin/nawk -f

BEGIN {

XMLDEPTH=0

while (getXML(ARGV[1],1)) {

if (XTYPE == "TAG") {

printf("\n%*s%s", 2*XMLDEPTH, "", XITEM)

XMLDEPTH++

for (attrName in XATTR)

printf(" %s=’%s’", attrName, XATTR[attrName])

} else if (XTYPE == "END") {

XMLDEPTH--

}

}

}

Figure 2.3: Outlining an XML file with Jan Weber’s getXML parser

Chapter 2: Reading XML Data with POSIX AWK 17

2.3 A portable subset of gawk-xml

Jan Webers’s portable script in the previous section was a significant advance over Steve
Coile’s script. Handling of XML events feels much more like it does in the gawk-xml API.
But after some time of working with the script, the differences between it and the gawk-xml
API become a bit annoying to remember. As a consequence, we took Jan’s script, copied
it into a new script file getXMLEVENT.awk and changed its inner working so as to minimize
differences to the gawk-xml API. If you intend to use the script as a template for your own
work, search for the file getXMLEVENT.awk in the following places:

• The gawk-xml distribution file contains a copy in the awklib/xml directory.

• If gawk-xml has already been installed on your host machine, a copy of the file should be
in the directory of shared source (which usually resides at a place like /usr/share/awk/
on GNU/Linux machines).

The file getXMLEVENT.awk as it is serves well if you want to start writing a script from
scratch. It already contains an event-loop in the BEGIN pattern of the script. Just take
the main body of the event-loop (the while loop) and change those parts that react on
incoming events of the XML event stream.

But in the remainder of this section, we will assume that we already have a script and
we intend to port it. Attempting to describe the approach in the most useful way, we will
go through two typical use-cases of the getXMLEVENT.awk template file. First we look at the
necessary steps for taking an existing script written for gawk-xml and making it portable for
use on Solaris machines (to name just the worst case scenario). Secondly, we go the other
way round: take an existing portable script and describe the necessary steps for converting
it into an gawk-xml script.

2.3.1 Converting a script from gawk-xml into portable subset

The general approach in porting a script that uses gawk-xml features to a portable script
is always the same. No matter if we port the original outline script (see Figure 3.2) or if we
take a non-trivial application like the DTD generator (see Section 7.6 [Generating a DTD
from a sample file], page 70). Now we proceed through the following series of steps.

1. We always start by first copying the template file getXMLEVENT.awk into a new file
(dtdgport.awk in the case of the DTD generator).

2. Near the top of the new script file, remove the main body of the original event loop.

3. Replace the original event loop with the pattern-action pairs from the application. In
the case of the DTD generator, take the first part of the source code (Figure 7.19) and
insert the XMLSTARTELEM action into the event loop.

4. Append the END pattern of Figure 7.19 verbatim after the event loop.

5. Append the second part of the application (containing function declarations in
Figure 7.20) verbatim.

6. Take the resulting application source file and try if it really works in the expected way.
Compare the resulting output to Figure 7.18. You will find that the resulting output
(a DTD) is indeed exactly the same.

awk -f dtdgport.awk docbook_chapter.xml

It is amazing how simple and effective it is to turn an gawk-xml script into a portable
script. After all, you should never forget about the limitations of the portable script.

18 XML Processing With gawk

This tiny little XML parser is far from being a complete XML parser. Most notably,
it misses the ability to read files with multi-byte characters and other Unicode encoding
details. Experience tells us that sooner or later your tiny little parser will stumble across
a customer- supplied XML file with special characters in it (copyright marks, typographic
dashes, european accent characters, or even chinese characters). Then the need arises to
port the script back to the full gawk-xml environment with its full XML parsing capability.
When you eventually reach this point, continue reading the next subsection and you will
find advice on porting your script back to gawk-xml.

2.3.2 Converting a script from portable subset into gawk-xml

Conversion of scripts from the portable subset to full gawk-xml is even easier. This ease
derives from the similarity of the portable subset’s event-loop with the API in Concise
Interface - Reduced set of variables shared by all events as described in the Section 8.2
[gawk-xml Core Language Interface Summary], page 88. The main point in porting is
replacing the invocation of getXMLEVENT with getline. Step through the following task
list and you will soon arrive at an application that supports all subtleties of the XML data.

1. Copy the application source code file into a new source code file.

2. In the new source code file, insert @load "xml" at the top of the file.

3. In the BEGIN pattern, convert the condition in the while statement of the event-loop.

while (getXMLEVENT(ARGV[1])) {

gets transformed into

while (getline > 0) {

4. Leave the rest of the BEGIN pattern with its event-loop unchanged.

5. Remove the functions getXMLEVENT, unescapeXML, and closeXMLEVENT.

6. Take the resulting application source file and try if it really works in the expected way.
Compare the resulting output.

Chapter 3: XML Core Language Extensions of gawk 19

3 XML Core Language Extensions of gawk

In Section 1.2 [How to traverse the tree with gawk], page 8, we have concentrated on the
tree structure of the XML file in Figure 1.3. We found the two patterns XMLSTARTELEM and
XMLENDELEM which help us following the process of tree traversal. In this chapter we will
find out what the other XML-specific patterns are. All of them will be used in example
scripts and their meaning will be described informally.

3.1 Checking for well-formedness

One of the advantages of using the XML format for storing data is that there are formalized
methods of checking correctness of the data. Whether the data is written by hand or it is
generated automatically, it is always advantageous to have tools for finding out if the new
data obeys certain rules (is a tag misspelt ? another one missing ? a third one in the wrong
place ?).

These mechanisms for checking correctness are applied at different levels. The lowest
level being well-formedness. The next higher levels of correctness-check are the level of the
DTD (see Section 7.6 [Generating a DTD from a sample file], page 70) and (even higher, but
not required yet by standards) the Schema. If you have a DTD (or Schema) specification
for your XML file, you can hand it over to a validation tool, which applies the specification,
checks for conformance and tells you the result. A simple tool for validation against a DTD
is xmllint (http://xmlsoft.org/xmllint.html), which is part of libxml and therefore
installed on most GNU/Linux systems. Validation against a Schema can be done with more
recent versions of xmllint or with the xsv (http://www.ltg.ed.ac.uk/~ht/xsv-status.
html) tool.

There are two reasons why validation is currently not incorporated into the gawk inter-
preter.

1. Validation is not trivial and only DTD-validation has reached a proper level of stan-
dardization, support and stability.

2. We want a tool that can process all well-formed XML files, not just a tool for processing
clean data. A good tool is one that you can rely on and use for fixing problems. What
would you think of a car that rejected to drive outside just because there is some mud
on the street and the sun isn’t shining ?

Here is a script for testing well-formedness of XML data. The real work of checking
well-formedness is done by the XML parser incorporated into gawk. We are only interested
in the result and some details for error diagnostic and recovery.

@load "xml"

END {

if (XMLERROR)

printf("XMLERROR ’%s’ at row %d col %d len %d\n",

XMLERROR, XMLROW, XMLCOL, XMLLEN)

else

print "file is well-formed"

}

As usual, the script starts with switching gawk into XML mode. We are not interested
in the content of the nodes being traversed, therefore we have no action to be triggered for

http://xmlsoft.org/xmllint.html
http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://www.ltg.ed.ac.uk/~ht/xsv-status.html

20 XML Processing With gawk

a node. Only at the end (when the XML file is already closed) we look at some variables
reporting success or failure. If the variable XMLERROR ever contains anything other than 0 or
the empty string, there is an error in parsing and the parser will stop tree traversal at the
place where the error is. An explanatory message is contained in XMLERROR (whose contents
depends on the specific parser used on this platform). The other variables in the example
contain the line number and the column in which the XML file is formed badly.

3.2 Printing an outline of an XML file

When working with XML files, it is sometimes necessary to gain some oversight over the
structure an XML file. Ordinary editors confront us with a view such as in Figure 1.2 and
not a pretty tree view such as in Figure 1.3. Software developers are used to reading text
files with proper indentation like the one in Figure 3.1.

book lang=’en’ id=’hello-world’

bookinfo

title

chapter id=’introduction’

title

para

sect1 id=’about-this-book’

title

para

sect1 id=’work-in-progress’

title

para

Figure 3.1: XML data (DocBook file) as a tree with proper indentation

Here, it is a bit harder to recognize hierarchical dependencies among the nodes. But
proper indentation allows you to oversee files with more than 100 elements (a purely graph-
ical view of such large files gets unbearable). Figure 3.1 was inspired by the tool outline
that comes with the Expat (http://expat.sourceforge.net) XML parser. The outline
tool produces such an indented output and we will now write a script that imitates this
kind of output.

@load "xml"

XMLSTARTELEM {

printf("%*s%s", 2*XMLDEPTH-2, "", XMLSTARTELEM)

for (i=1; i<=NF; i++)

printf(" %s=’%s’", $i, XMLATTR[$i])

print ""

}

Figure 3.2: outline.awk produces a tree-like outline of XML data

The script outline.awk in Figure 3.2 looks very similar to the other scripts we wrote
earlier, especially the script max_depth.awk, which also traversed nodes and remembered
the depth of the tree while traversing. The most important differences are in the lines with
the print statements. For the first time, we don’t just check if the XMLSTARTELEM variable

http://expat.sourceforge.net

Chapter 3: XML Core Language Extensions of gawk 21

contains a tag name, but we also print the name out, properly indented with a printf

format statement (two blank characters for each indentation level).

At the end of the description of the max_depth.awk script in Figure 1.4 we already
mentioned the variable XMLDEPTH, which is used here as a replacement of the depth variable.
As a consequence, bookkeeping with the depth variable in an action after the XMLENDELEM
is not necessary anymore. Our script has become shorter and easier to read.

The other new phenomenon in this script is the associative array XMLATTR. Whenever
we enter a markup block (and XMLSTARTELEM is non-empty), the array XMLATTR contains all
the attributes of the tag. You can find out the value of an attribute by accessing the array
with the attribute’s name as an array index. In a well-formed XML file, all the attribute
names of one tag are distinct, so we can be sure that each attribute has its own place in
the array. The only thing that’s left to do is to iterate over all the entries in the array and
print name and value in a formatted way. Earlier versions of this script really iterated over
the associative array with the for (i in XMLATTR) loop. Doing so is still an option, but in
this case we wanted to make sure that attributes are printed in exactly the same oder that
is given in the original XML data. The exact order of attribute names is reproduced in the
fields $1 .. $NF. So the for loop can iterate over the attributes names in the fields $1 ..

$NF and print the attribute values XMLATTR[$i].

Please note that, staring with gawk 4.2 which supports version 2 of the API, the XMLATTR
values are considered to be user input and are eligible for the strnum attribute. So if the
values appear to be numeric, gawk will treat them as numbers in comparisons. This feature
was not available prior to version 2 of the gawk API.

3.3 Pulling data out of an XML file

The script we are analyzing in this section produces exactly the same output as the script
in the previous section. So, what’s so different about it that we need a second one ? It is
the programming style which is employed in solving the problem at hand. The previous
script was written so that the pattern XMLSTARTELEM is positioned within the pattern. This
is ordinary AWK programming style, but it is not the way users of other programming
languages were brought up with. In a procedural language, the software developer expects
that he himself determines control flow within a program. He writes down what has to
be done first, second, third and so on. In the pattern-action model of AWK, the novice
software developer often has the oppressive feeling that

• he is not in control

• events seem to crackle down on him from nowhere

• data flow seems chaotic and invariants don’t exist

• assertions seem impossible

This feeling is characteristic for a whole class of programming environments. Most
people would never think of the following programming environments to have something
in common, but they have. It is the absence of a static control flow which unites these
environments under one roof:

• In GUI frameworks like the X Window system, the main program is a trivial event loop
– the main program does nothing but wait for events and invoke event-handlers.

22 XML Processing With gawk

• In the Prolog programming language, the main program has the form of a query – and
then the Prolog interpreter decides which rules to apply to solve the query.

• When writing a compiler with the lex and yacc tools, the main program only invokes
a function yyparse() and the exact control flow depends on the input source which
controls invocation of certain rules.

• When writing an XML parser with the Expat (http://expat.sourceforge.net) XML
parser, the main program registers some callback handler functions, passes the XML
source to the Expat parser and the detailed invocation of callback function depends on
the XML source.

• Finally, AWK’s pattern-action encourages writing scripts that have no main program
at all.

Within the context of XML, a terminology has been invented which distinguishes the
procedural pull style from the event-guided push style. The script in the previous section
was an example of a push-style script. Recognizing that most developers don’t like their
program’s control flow to be pushed around, we will now present a script which pulls one
item after the other from the XML file and decides what to do next in a more obvious way.

@load "xml"

BEGIN {

while (getline > 0) {

switch (XMLEVENT) {

case "STARTELEM": {

printf("%*s%s", 2*XMLDEPTH-2, "", XMLSTARTELEM)

for (i=1; i<=NF; i++)

printf(" %s=’%s’", $i, XMLATTR[$i])

print ""

}

}

}

}

One XML event after the other is pulled out of the data with the getline command.
It’s like feeling each grain of sand pour through your fingers. Users who prefer this style
of reading input will also appreciate another novelty: The variable XMLEVENT. While the
push-style script in Figure 3.2 used the event-specific variable XMLSTARTELEM to detect the
occurrence of a new XML element, our pull-style script always looks at the value of the
same universal variable XMLEVENT to detect a new XML element. We will dwell on a more
detailed example in Figure 7.14.

Formally, we have a script that consists of one BEGIN pattern followed by an action
which is always invoked. You see, this is a corner case of the pattern-action model which
has been reduced so wide that its essence has disappeared. Instead of the patterns you
now see the cases of switch statement, embedded into a while loop (for reading the file
item-wise). Obviously, we have explicite conditionals now, instead of the implicite ones we
used formerly. The actions invoked within the case conditions are the same we have seen
in the push approach.

http://expat.sourceforge.net

Chapter 3: XML Core Language Extensions of gawk 23

3.4 Character data and encoding of character sets

All of the example scripts we have seen so far have one thing in common: they were only
interested in the tree structure of the XML data. None of them treated the words between
the tags. When working with files like the one in Figure 1.2, you are sometimes more
interested in the words that are embedded in the nodes of Figure 1.3. XML terminology
calls these words character data. In the case of a DocBook file one could call these words
which are interspersed between the tags the payload of the whole document. Sometimes one
is intersted in freeing this payload from all the useless stuff in angle brackets and extract
the character data from the file. The structure of the document may be lost, but the bare
textual content in ASCII is revealed and ready for importing it into an application software
which does not understand XML.

Hello, world

Introduction

This is the introduction. It has two sections

About this book

This is my first DocBook file.

Warning

This is still under construction.

Figure 3.3: Example of some textual data from a DocBook file

You may wonder where the blank lines between the text lines come from. They are
part of the XML file; each line break in the XML outside the tags (even the one after the
closing angle bracket of a tag) is character data. The script which produces such an output
is extremely simple.

@load "xml"

XMLCHARDATA { printf $0 }

Figure 3.4: extract_characters.awk extracts textual data from an XML file

Each time some character data is parsed, the XMLCHARDATA pattern is set to 1 and the
character data itself is stored into the variable $0. A bit unusual is the fact that the text
itself is stored into $0 and not in XMLCHARDATA. When working with text, one often needs
the text split into fields like AWK does it when the interpreter is not in XML mode. With
the words stored in fields $1 . . . $NF, we now have found a way to refer to isolated words
again; it would be easy to extend the script above so that it counts words like the script
wc.awk did.

Most texts are not as simple as Figure 3.3. Textual data in computers is not limited to 26
characters and some punctuation marks anymore. On all keyboards we have various kinds

24 XML Processing With gawk

of brackets (<, [and {) and in Europe we have had things like the ligature (Æ) or the umlaut
(ü) for centuries. Having thousands of symbols is not a problem in itself, but it became a
problem when software applications started representing these symbols with different bytes
(or even byte sequences). Today we have a standard for representing all the symbols in the
world with a byte sequence – Unicode (http://www.unicode.org/versions/Unicode4.0.
0). Unfortunately, the accepted standard came too late. Earlier standardization efforts had
created ways of representing subsets of the complete symbol set, each subset containing 256
symbols which could be represented by one byte. These subsets had names which are still
in use today (like ISO-8859-1 or IBM-852 or ISO-2022-JP). Then came the programming
language Java with a char data type having 16 bits for each character. It turned out that
16 bits were also not enough to represent all symbols. Having recognized the fixed 16 bit
characters as a failure, the standards organizations finally established the current Unicode
standard. Today’s Unicode character set is a wonderful catalog of symbols – the book
mentioned above needs more than a 1000 pages to list them all.

And now to the ugly side of Unicode:

• The names of the 8 bit character sets are still in use and have to be supported by XML
parsers and the software built upon them.

• Symbols in the Unicode catalog have an unambiguous number, but their number may
be encoded in many different ways with varying numbers of bytes per character.

• When displaying a text, you have to decide which encoding you want to use; if the text
is encoded differently, you will see strange symbols that you have never dreamed of.

Notice that the character set and the character encoding are very different notions. The
former is a set in the mathematical sense while the latter is a way of mapping the number
of the character into a byte sequence of varying length. To make things worse: The use of
these terms is not consistent – neither the XML specification nor the literature distinguishes
the terms cleanly. For example, take the citation from the excellent O’Reilly book XML in a
Nutshell (http://www.oreilly.com/catalog/xmlnut3/) in chapter 5.2 (http://safari.
oreilly.com/0596002920/xmlnut2-CHP-5-SECT-2):

5.2 The Encoding Declaration

Every XML document should have an encoding declaration as part of its XML
declaration. The encoding declaration tells the parser in which character set
the document is written. It’s used only when other metadata from outside the
file is not available. For example, this XML declaration says that the document
uses the character encoding US-ASCII:

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>

This one states that the document uses the Latin-1 character set, though it
uses the more official name ISO-8859-1:

<?xml version="1.0" encoding="ISO-8859-1"?>

Even if metadata is not available, the encoding declaration can be omitted if
the document is written in either the UTF-8 or UTF-16 encodings of Unicode.
UTF-8 is a strict superset of ASCII, so ASCII files can be legal XML documents
without an encoding declaration.

Several times a character set name is assigned to an encoding declaration – the book
does it and the XML samples do it too. Only in the last paragraph the usage of terms is
clean: UTF-8 is the default way of encoding a character into a byte sequence.

http://www.unicode.org/versions/Unicode4.0.0
http://www.unicode.org/versions/Unicode4.0.0
http://www.oreilly.com/catalog/xmlnut3/
http://www.oreilly.com/catalog/xmlnut3/
 http://safari.oreilly.com/0596002920/xmlnut2-CHP-5-SECT-2
 http://safari.oreilly.com/0596002920/xmlnut2-CHP-5-SECT-2

Chapter 3: XML Core Language Extensions of gawk 25

After this unpleasant excursion into the cultural history of textual data in occidental
societies, let’s get back to gawk and see how the concepts of the encoding and the character
set are incorporated into the language. Three variables are all that you need to know,
but each of them comes from a different context. Take care that you recognize the differ-
ence between the XML document, gawk’s internal data handling and the influence of an
environment variable from the shell environment setting the locale.

• XMLATTR["ENCODING"] is a pattern variable that (when non-empty and
XMLDECLARATION is triggered) contains the name of the character encoding in which
the XML file was originally encoded. This information comes from the first line of the
XML file (if the line contains the usual XML header). There is no use in overwriting
this variable, the variable is meant to tell you what’s in the XML data and nothing
happens when you change XMLATTR["ENCODING"].

• XMLCHARSET is the variable to change if you want to see the XML data converted to a
character set of your own choice. When you set this variable, the gawk interpreter will
remember the character set of your choice. But this choice will take effect only upon
opening the next file. A change of XMLCHARSET will not influence XML data from a file
that has already been opened earlier for reading.

• LANG is an environment variable of your operating system. It tells the gawk interpreter
which value to use for XMLCHARSET on initial startup when nothing has been said about
it in the user’s script. In the absence of any setting for LANG, US-ASCII is used as the
default encoding. Up to now, we have always talked about the encoding and character
set of the data to be processed. Remember that the source code of your program is
also written in some character set. It is usually the LANG character set that is used
while writing programs. Imagine what happens when you have a program containing a
character from your native character set, for which there is no encoding in the character
set used at run-time. The alert reader will notice how consequent gawk is in following
the Unicode tradition of mixing up character encoding and character set.

After so much scholastic reasoning, you might be inclined to presume that character
sets and encodings are hardly of any use in real life (except for befuddling the novice).
The following example should dispel your doubts. In real life, circumstance transcending
sensible reasoning could require you to import the text in Figure 3.3 into a Microsoft
Windows application. Contemporary flavours of Microsoft Windows prefer to store textual
data in UTF-16. So, a script for converting the text to UTF-16 would be a nice tool to have
– and you already have such a tool. The script extract_characters.awk in Figure 3.4 will
do the job, if you tell the gawk interpreter to use the UTF-16 encoding when reading the
DocBook file. Two alternatives ways of reaching this target arise:

• Change the script and insert a line setting XMLCHARSET to UTF-16. After invocation,
the gawk interpreter will now print the same data as in Figure 3.3, but converted to
UTF-16.

BEGIN { XMLCHARSET="utf-16" }

• Do not change the script, but before invoking the gawk interpreter, set the environment
variable LANG to UTF-16.

The result will be the same in both cases, provided your operating system supports these
character sets and encodings. In real life, it is probably a better idea to avoid the second of

26 XML Processing With gawk

these approaches because it requires changes (and possibly side-effects) at the level of the
command line shell.

3.5 Dealing with DTDs

Earlier in this chapter we have seen that gawk does not validate XML data against a DTD.
The declaration of a document type in the header of an XML file is an optional part of the
data, not a mandatory one. If such a declaration is present (like it is in Figure 1.2), the
reference to the DTD will not be resolved and its contents will not be parsed. However,
the presence of the declaration will be reported by gawk. When the declaration starts,
the variable XMLSTARTDOCT contains the name of the root element’s tag; and later, when
the declaration ends, the variable XMLENDDOCT is set to 1. In between, the array variable
XMLATTR will be populated with the values of the public identifier of the DTD (if any) and
the value of the system’s identifier of the DTD (if any). Other parts of the declaration
(elements, attributes and entities) will not be reported.

@load "xml"

XMLDECLARATION {

version = XMLATTR["VERSION"]

encoding = XMLATTR["ENCODING"]

standalone = XMLATTR["STANDALONE"]

}

XMLSTARTDOCT {

root = XMLSTARTDOCT

pub_id = XMLATTR["PUBLIC"]

sys_id = XMLATTR["SYSTEM"]

intsubset = XMLATTR["INTERNAL_SUBSET"]

}

XMLENDDOCT {

print FILENAME

print " version ’" version "’"

print " encoding ’" encoding "’"

print " standalone ’" standalone "’"

print " root id ’" root "’"

print " public id ’" pub_id "’"

print " system id ’" sys_id "’"

print " intsubset ’" intsubset "’"

print ""

version = encoding = standalone = ""

root = pub_id = sys_id = intsubset ""

}

Figure 3.5: db_version.awk extracts details about the DTD from an XML file

Most users can safely ignore these variables if they are only interested in the data itself.
But some users may take advantage of these variables for checking requirements of the
XML data. If your data base consists of thousands of XML file of diverse origins, the public
identifier of their DTDs will help you gain an oversight over the kind of data you have
to handle and over potential version conflicts. The script in Figure 3.5 will assist you in

Chapter 3: XML Core Language Extensions of gawk 27

analyzing your data files. It searches for the variables mentioned above and evaluates their
content. At the start of the DTD, the tag name of the root element is stored; the identifiers
are also stored and finally, those values are printed along with the name of the file which
was analyzed. After each DTD, the remembered values are set to an empty string until the
DTD of the next file arrives.

In Figure 3.6 you can see an example output of the script in Figure 3.5. The first entry
is the file we already know from Figure 1.2. Obviously, the first entry is a DocBook file
(English version 4.2) containing a book element which has to be validated against a local
copy of the DTD at CERN in Switzerland. The second file is a chapter element of DocBook
(English version 4.1.2) to be validated against a DTD on the Internet. Finally, the third
entry is a file describing a project of the GanttProject application. There is only a tag name
for the root element specified, a DTD does not seem to exist.

data/dbfile.xml

version ’’

encoding ’’

standalone ’’

root id ’book’

public id ’-//OASIS//DTD DocBook XML V4.2//EN’

system id ’/afs/cern.ch/sw/XML/XMLBIN/share/www.oasis-open.org/docbook/xmldtd-4.2/docbookx.dtd’

intsubset ’’

data/docbook_chapter.xml

version ’’

encoding ’’

standalone ’’

root id ’chapter’

public id ’-//OASIS//DTD DocBook XML V4.1.2//EN’

system id ’http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd’

intsubset ’’

data/exampleGantt.gan

version ’1.0’

encoding ’UTF-8’

standalone ’’

root id ’ganttproject.sourceforge.net’

public id ’’

system id ’’

intsubset ’’

Figure 3.6: Details about the DTDs in some XML files

You may wish to make changes to this script if you need it in daily work. For example,
the script currently reports nothing for files which have no DTD declaration in them. You
can easily change this by appending an action for the END rule which reports in case all the
variables root, pub_id and sys_id are empty. As it is, the script parses the entire XML
file, although the DTD is always positioned at the top, before the root element. Parsing
the root element is unnecessary and you can improve the speed of the script significantly if
you tell it to stop parsing when the first element (the root element) comes in.

XMLSTARTELEM { nextfile }

28 XML Processing With gawk

3.6 Sorting out all kinds of data from an XML file

If you have read this book sequentially until now, you have understood how to read an XML
file and treat it as a tree. You also know how to handle different character encodings and
DTD declarations. This section is meant to give you an overview of what other patterns
there are when you work with XML files. The overview is meant to be complete in the sense
that you will see the name of every pattern involved and an example of usage. Conceptually,
you will not see much new material, this is only about some new variables for passing
information from the XML file. Here are the new patterns:

• XMLPROCINST contains the name of a processing instruction, while $0 contains its
contents.

• XMLCOMMENT indicates an XML comment. The comment itself is in $0.

• XMLDECLARATION indicates that the XML version number from the first line of
the XML file can be read from XMLATTR["VERSION"].

• XMLUNPARSED indicates a text that did not fit into any other category. Its contents
is in $0.

The following script is meant to demonstrate all XML patterns and variables. It can
help you while you are debugging other scripts because this script will show you everything
that is in the XML file and how it is read by gawk.

Chapter 3: XML Core Language Extensions of gawk 29

@load "xml"

Set XMLMODE so that the XML parser reads strictly

compliant XML data. Convert characters to Latin-1.

BEGIN { XMLMODE=1 ; XMLCHARSET = "ISO-8859-1" }

Print an outline of nested tags and attributes.

XMLSTARTELEM {

printf("%*s%s", 2*XMLDEPTH-2, "", XMLSTARTELEM)

for (i=1; i<=NF; i++)

printf(" %s=’%s’", $i, XMLATTR[$i])

print ""

}

Upon closing tag, XMLPATH still holds the tag name.

XMLENDELEM { printf("%s %s\n", "XMLENDELEM", XMLPATH) }

XMLEVENT holds the name of the current event.

XMLEVENT { print "XMLEVENT", XMLEVENT, XMLNAME, $0 }

Character data will not be lost.

XMLCHARDATA { print "XMLCHARDATA", $0 }

Processing instruction and comments instructions will be reported.

XMLPROCINST { print "XMLPROCINST", XMLPROCINST, $0 }

XMLCOMMENT { print "XMLCOMMENT", $0 }

CDATA sections are used for quoting verbatim text.

XMLSTARTCDATA { print "XMLSTARTCDATA" }

CDATA blocks have an end that is reported.

XMLENDCDATA { print "XMLENDCDATA" }

The very first event holds the version info.

XMLDECLARATION {

version = XMLATTR["VERSION"]

encoding = XMLATTR["ENCODING"]

standalone = XMLATTR["STANDALONE"]

}

DTDs, if present, are indicated as such.

XMLSTARTDOCT {

root = XMLSTARTDOCT

print "XMLATTR[PUBLIC]", XMLATTR["PUBLIC"]

print "XMLATTR[SYSTEM]", XMLATTR["SYSTEM"]

print "XMLATTR[INTERNAL_SUBSET]", XMLATTR["INTERNAL_SUBSET"]

}

The end of a DTD is also indicated.

XMLENDDOCT { print "root", root }

Unparsed text occurs rarely.

XMLUNPARSED { print "XMLUNPARSED", $0 }

XMLENDDOCUMENT occurs only with XML data that is not

strictly compliant to standards (multiple root elements).

XMLENDDOCUMENT { print "XMLENDDOCUMENT" }

At the end of the file, you can check if an error occurred.

END { if (XMLERROR)

printf("XMLERROR ’%s’ at row %d col %d len %d\n",

XMLERROR, XMLROW, XMLCOL, XMLLEN)

}

Figure 3.7: The script demo_pusher.awk demonstrates all variables of gawk-xml

Chapter 4: Some Convenience with the xmllib library 31

4 Some Convenience with the xmllib library

All the variables that were added to the AWK language to allow for reading XML files show
you one event at a time. If you want to rearrange data from several nodes, you have to
collect the data during tree traversal. One example for this situation is the name of the
parent node which is needed several time in the examples of Chapter 7 [Some Advanced
Applications], page 51.

Stefan Tramm has written the xmllib library because he wanted to simplify the use of
gawk for command line usage (one-liners). His library comes as an ordinary script file with
AWK code and is automatically included upon invocation of xmlgawk. It introduces new
variables for easy handling of character data and tag nesting. Stefan contributed the library
as well as the xmlgawk wrapper script.

4.1 Introduction Examples

The most used AWK script is something like this:

$ awk ’/matchrx/ { print $3, $1 } foo.dat

which assumes a line at a time approach and the division of a line (record) into words
(fields), where only some fields are printed for records that match. With xmlgawk this does
not change drastically, the approach is now one XML token at a time:

$ xmlgawk ’/on-loan/ { grep() }’ books.xml

which prints the complete XML subtree, where "on-loan" matches either characterdata,
some part of a start- or endelement or some part of an attributname or -value. The func-
tion grep() provided in the xmllib.awk does all the magic for you. If you need a simple
prettyprinter for an XML stream (because there are perhaps no new lines in the file), then
you can use this:

$ xmlgawk ’SE { grep(4) }’ books.xml

The number "4" gives the indention. The variable SE is set on every startelement,
including the root element. This is an ideal command line idiom. Faster (in CPU time)
xmlgawk solutions are possible, but whats the difference between 100msec or 1 second for
a quick check? The second most anticipated usage is searching through parts of XML
documents and printing the results in a nicer human readable form:

$ xmlgawk ’

EE == "title" { t = CDATA }

EE == "author" { w = CDATA }

EE == "book" && ATTR[PATH"@publisher"] == "WROX" { print "author:", w, "title:", t }

’ books.xml

This script memorizes every <author> and <title> and prints them only, when a <book>
has the attribute "publisher" with the value "WROX". The variable EE is set with the
name of an endelement, The variable PATH contains all ’open’ startelements before the
current one in the document. The array ATTR contains all XML Attributes of every
startelement in PATH. Here is a little example to make it clearer:

$ xmlgawk ’

SE { print "SE", SE

print " PATH", PATH

32 XML Processing With gawk

print " CDATA", CDATA

XmlTraceAttr(PATH)

}

EE { print "EE", EE

print " PATH", PATH

print " CDATA", CDATA

}

’ books.xml

SE books

PATH /books

CDATA

SE book

PATH /books/book

CDATA

ATTR[/books/book@on-loan]="Sanjay"

ATTR[/books/book@publisher]="IDG books"

SE title

PATH /books/book/title

CDATA

EE title

PATH /books/book/title

CDATA XML Bible

SE author

PATH /books/book/author

CDATA

EE author

PATH /books/book/author

CDATA Elliotte Rusty Harold

EE book

PATH /books/book

CDATA

The variable CDATA contains the character data right before the start- or endelement,

which is very convenient in the above examples and in daily life.

4.2 Main features

The main ideas are:

• make character data available preceding start- and endelements

• provide the current path (parse stack, nesting level)

• make all startelement attributes of the complete path available

• provide helper functions for output

• provide help for grep-like tools

• provide debug support

The following sections are devoted to the above topics.

Chapter 4: Some Convenience with the xmllib library 33

Character Data (CDATA)

The variable CDATA collects the characters of all XMLCHARDATA events. At an XML-
STARTELEM or XMLENDELEM event the CDATA variable is trimmed (by calling the
function trim()), that means leading and trailing whitespace ([:space:]) characters are re-
moved.

Please, keep in mind to use the idiom ’print quoteamp(CDATA)’ in your code, where

the output is again XML or (X)HTML.

Start- and End-elements (SE, EE, PATH, ATTR[])

The variable SE has the same content and behaviour as XMLSTARTELEM, but it is much
faster to type (EE does the same for XMLENDELEM).

The variable PATH contains all currently ’open’ startelements. It is like a parse stack
and allows checks for the context of a current element. Elements are delimited by slashes
"/". If PATH ist not empty, it begins with a "/".

The ATTR array stores every attribute of ’open’ startelements. This is sometimes very
convenient, because you can simply ’look back’ for already seen attributes. Attributenames
are separated by an at-sign "@" from its element path, eg:

/books/book@publisher

The helper function XmlTraceAttr prints all attributes for the specified path (if no path

argument is given, the function defaults to PATH).

Comments (CM)

CM contains the trim-ed comment string in XMLCOMMENT, and $0 holds the completely
reconstructed comment.

All comments in a character data section will be seen by the user program before the

accumulated CDATA variable delivers the characters.

Processing Instructions (PI)

All processing instruction are available via PI (which has the same content as XML-
PROCINST). $0 contains the completely reconstructed processing instruction.

The very first procinst is specially handled by expat and den XML core extension.

xmllib.awk takes care of this and delivers the very first procinst as a normal procinst via

PI.

Real Character Data (XmlCDATA)

In the very seldom case you have to process real character data section, the variable Xml-

CDATA delivers the untrimmed characters between a XMLSTARTCDATA and a XM-

LENDCDATA token. These characters are also appended to CDATA, so you will get every

character within CDATA at the next start or end element.

34 XML Processing With gawk

grep function

The grep function is build, to print a complete subtree, starting at a startelement (XML-
STARTELEM) token. Therefore grep cannot print comments before and behind the root
element.

If grep is given a numerical argument, grep prettyprints the XML subtree and uses the

value as the number of spaces for indention. If no argument is given, the subtree is printed

as in the source document.

XmlStartElement and XmlEndElement functions

The helper functions return nice formatted strings for the tail of PATH. These functions

are used in the grep function, but can also be used by end user programs.

XmlPathTail function

Delivers the current element name from PATH. It needs two parameters, the path and the

delimiter character. If no path is supplied PATH will be used, if no delimiter is supplied

"/" will be used.

XmlTraceAttr function

When debugging a xmlgawk script it is sometimes very welcome to have a simple functions,

which prints all attributes. This is exactly what XmlTraceAttr does. The optional param-

eter is the path of the startelement for which the attributes should be printed (the default

is PATH).

Simple String manipulation functions

xmllib.awk provides three additional little but useful functions:

remove leading and trailing [[:space:]] characters

function trim(str)

{

sub(/^[[:space:]]+/, "", str)

if (str) sub(/[[:space:]]+$/, "", str)

return str

}

quote function for character data escape & and <

function quoteamp(str)

{

gsub(/&/, "\\&", str)

gsub(/</, "\\<", str)

return str

}

quote function for attribute values

escape every character, which can

cause problems in attribute value

Chapter 4: Some Convenience with the xmllib library 35

strings; we have no information,

whether attribute values were

enclosed in single or double quotes

function quotequote(str)

{

gsub(/&/, "\\&", str)

gsub(/</, "\\<", str)

gsub(/"/, "\\"", str)

gsub(/’/, "\\'", str)

return str

}

Minor Issues

The grep() and XmlStartelement() functions do NOT return the exact same string as seen
in the input, the strings are semantically identical but completely reconstructed. xmlgawk
gives you an 80% solution fast, if you want more, use another tool (and more time).

xmllib.awk passes every token from the gawk-xml core-extension through to the user
program. This means, that you can use NR and FNR in your code (especially in rules
FNR==1), but remember the count XML tokens now.

All variable and function names beginning with the prefix ’XML’ are reserved for the
GAWK XML core and prefix ’Xml’ for xmllib.awk. If you want to prefix a name with ’xml’
in your programs use all lower case.

For convenience purposes some names in the xmllib.awk have shorter names (variables
all uppercase, functions all lowercase):

• SE (identical setting as XMLSTARTELEMENT)

• EE (identical setting as XMLSTARTELEMENT)

• CM (identical setting as XMLCOMMENT)

• PI (identical setting as XMLPROCINST)

• CDATA (collected and trimed XMLCHARDATA)

• ATTR (complete attribute stack)

• PATH (complete element path)

• grep()

• quoteamp()

• quotequote()

4.3 Usage of xmllib.awk

The following sections give more elaborate examples for the xmlgawk programming. At first
we concentrate on search tools, then we focus on converters and template instantiations.
The last sections gives an example how classical configuration files can be replaced by XML
files, which opens the brave new XML world to old shell script(er)s – new tricks to an old
dog.

Most examples use the following books.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>

36 XML Processing With gawk

<books>

<book publisher="IDG books" on-loan="Sanjay">

<title>XML Bible</title>

<author>Elliotte Rusty Harold</author>

</book>

<book publisher="Addison-Wesley">

<title>The Mythical Man Month</title>

<author>Frederick Brooks</author>

</book>

<book publisher="WROX">

<title>Professional XSLT 2nd Edition</title>

<author>Michael Kay</author>

</book>

<book publisher="Prentice Hall" on-loan="Sander" >

<title>Definitive XML Schema</title>

<author>Priscilla Walmsley</author>

</book>

<book publisher="APress">

<title>A Programmer’s Introduction to C#</title>

<author>Eric Gunnerson</author>

</book>

</books>

Ad hoc Queries (grep-like tools)

At first some one-liners:

print all books from the publisher WROX

$ xmlgawk ’XMLATTR["publisher"]=="WROX" {grep(4)}’ books.xml

print complete information for every loaned book

$ xmlgawk ’XMLATTR["on-loan"] {grep(2)}’ books.xml

print loaner name and loaned book title only

$ xmlgawk ’EE=="title" && l=ATTR["/books/book@on-loan"] { \

print l, "loaned", CDATA }’ books.xml

print all book titles containing the word "Professional"

to print "&" in titles as "&", use quoteamp()

$ xmlgawk ’EE=="title" && CDATA~/Professional/ { print PATH ":", quoteamp(CDATA) }’ books.xml

Formatter and Converter (sed-like tools)

The complexity of formatter or converter tools depends on the output format. The simpler
the better – comma-separated-value-files aren’t dead and wont be dead in 20 years...

If the output format will be XML, we speak of a formatter and if it will be something
different, we speak of a converter. Converters can generate CSV-, SQL-, or proprietary
format files out of XML input.

Chapter 4: Some Convenience with the xmllib library 37

Formatters are like prettyprinters or extended grep-like tools. The main question you
have to answer is whether you need a nice human readable indented formatting or just one
line of characters, or something in between.

In both cases you have to take care of the character set encoding you want to generate:
ASCII, ISO-8859, UTF-8,

Here will follow the extensive Jabber XML-Configfile manipulation script (in productive
use at the employer of one author).

Comparison to XSLT

At the moment, template instantiation mechanisms like XSLT are en vogue. We will give
a short example why this is so, and what we can do with shell and xmlgawk.

The examples are taken from the very good pages of Anders Moeller (take a look at
http://www.brics.dk/~amoeller/XML/).

Here you see the proposed XSLT script:

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

xmlns="http://www.w3.org/1999/xhtml">;

<xsl:template match="nutrition">

<html xmlns="http://www.w3.org/1999/xhtml">;

<head>

<link href="../style.css"

rel="stylesheet"

type="text/css"/>

</head>

<body>

<table border="1">

<tr>

<th>Dish</th>

<th>Calories</th>

<th>Fat</th>

<th>Carbohydrates</th>

<th>Protein</th>

</tr>

<xsl:apply-templates

select="dish"/>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="dish">

<tr>

<td><xsl:value-of

select="@name"/></td>

<td><xsl:value-of

select="@calories"/></td>

http://www.brics.dk/~amoeller/XML/

38 XML Processing With gawk

<td><xsl:value-of

select="@fat"/>%</td>

<td><xsl:value-of

select="@carbohydrates"/>%</td>

<td><xsl:value-of

select="@protein"/>%</td>

</tr>

</xsl:template>

</xsl:stylesheet>

A straightforward translation into gawk looks like this:

xmlgawk ’

BEGIN { print "<html xmlns=\"http://www.w3.org/1999/xhtml\"><head>;"

print "<link href=\"../style.css\ rel=\"stylesheet\" type=\"text/css\"/>"

print "</head><body><table border=\"1\">"

print "<tr><th>Dish</th><th>Calories</th>"

print "<th>Fat</th><th>Carbohydrates</th>"

print "<th>Protein</th></tr>"

}

EE == "title" { print "<tr><td>" CDATA "</td>" }

SE == "nutrition" { print "<td>" XMLATTR["calories"] "</td>"

print "<td>" XMLATTR["fat"] "%</td>"

print "<td>" XMLATTR["carbohydrates"] "%</td>"

print "<td>" XMLATTR["protein"] "%</td></tr>"

}

END { print "</table></body></html>" }

’ recipes.xml

As you can see, the script is filled with print statements and full of \-escapes in the
strings. It it really annoying and error-prone to write the print strings and the escapes.
This is – in the eyes of the authors – the main reason, that XSLT is used. You take the
original HTML, XHTML or XML and insert afterwards the logic. In plain AWK (or Perl
or Tcl) it is the other way round – write the logic and insert the template (with print and
escapes).

This is the place, where the good old Unix shell with HERE-documents can help out.
Take a look at the following solution:

#!/bin/bash

cat <<EOT

<html

xmlns="http://www.w3.org/1999/xhtml">;

<head>

<link href="../style.css"

rel="stylesheet"

type="text/css"/>

</head>

<body>

<table border="1">

Chapter 4: Some Convenience with the xmllib library 39

<tr>

<th>Dish</th>

<th>Calories</th>

<th>Fat</th>

<th>Carbohydrates</th>

<th>Protein</th>

</tr>

$(xmlgawk ’

EE == "title" { print " <tr>"

print " <td>" CDATA "</td>"

}

SE == "nutrition" { print " <td>" XMLATTR["calories"] "</td>"

print " <td>" XMLATTR["fat"] "%</td>"

print " <td>" XMLATTR["carbohydrates"] "%</td>"

print " <td>" XMLATTR["protein"] "%</td>"

print " </tr>"

}

’ recipes.xml)

</table>

</body>

</html>

EOT

You still have to write some print statements, which seems a reasonable compromise
between both worlds (template- vs. logic driven).

Chapter 5: DOM-like access with the xmltree library 41

5 DOM-like access with the xmltree library

Even with the xmllib, random access to nodes in the tree is not possible. There are a few
applications which need access to parent and child elements and sometimes even remote
places in the tree. That’s why Manuel Collado wrote the xmltree library.

Manuel’s xmltree reads an XML file at once and stores it entirely. This approach is
called the DOM approach. Languages like XSL inherently assume that the DOM is present
when executing a script. This is, at once, the strength (random access) and the weakness
(holding the entire file in memory) of these languages.

Manuel contributed the xmltree library.

FIXME: This chapter has not been written yet.

Chapter 6: Problems from the newsgroups comp.text.xml and comp.lang.awk 43

6 Problems from the newsgroups comp.text.xml
and comp.lang.awk

This chapter is a collection of XML related problems which were posted in newsgroups on
the Internet. After a citation of the original posting and a short outline of the problem,
each of these problems is followed by a solution in gawk-xml. Although we take care to find
an exact solution to the original problem, we are not really interested in the details of any
of these problems. What we are interested in is a demonstration of how to attack problems
of this kind in general. The raison d’être for this chapter is manifold:

• The problems being posted in newsgroups often represent daily work much better than
academic textbook examples.

• The development of Open Source Software is driven by the needs occurring in real life.
Adapting a tool to user’s needs is much more rewarding than adapting it to ideological
criteria.

• Such problems are a welcome test bed for evaluating the adequacy of a tool. We will
learn about the bright sides and also about the not-so-bright sides of gawk-xml.

• Each kind of problem-solving tool will only prove its utility when the user has acquired
some basic skills and techniques to use it. We will demonstrate some of these in passing.

6.1 Extract the elements where i="Y"

The original poster of this problem wanted to find all tags which have an attribute of a
specific kind (i="Y") and produce the value of another attribute as output. He described
the problem as follows with an input/output relationship:

suppose i have:

<a>

<b i="Y" j="aaaa"/>

<c i="N" j="bbbb"/>

<d i="Y" j="cccc"/>

<e i="N" j="dddd"/>

<f i="N" j="eeee"/>

<g i="Y" j="ffff"/>

and i want to extract the elements where i="Y" such that i get something like

<x>

<y>1. aaaa</y>

<y>2. cccc</y>

<y>3. gggg</y>

</x>

how would i get the numbering to work across the different elements?

He probably had XML data from an input form with two fields. The first field containing
the answer to an alternative choice (Y/N) and the second field containing some description.
The goal was to extract the specific description for all positive answers (i="Y"). All the

44 XML Processing With gawk

output data had to be embedded into nested tags (x and y). The nesting of the tags explains
the print commands in the BEGIN and the END patterns of the following solution.

@load "xml"

BEGIN { print "<x>" }

XMLSTARTELEM {

if (XMLATTR["i"] == "Y")

print " <y>" ++n ". " XMLATTR["j"] "</y>"

}

END { print "</x>" }

An XMLSTARTELEM pattern triggers the printing of the y output tags. But only if the
attribute i has the value Y will an output be printed. The output itself consists of the value
of the attribute j and is embedded into y tags.

If you try the script above on the input data supplied by the original poster, you will
notice that the resulting output differs slightly from the desired output given above. There
is obviously a typo in the third item of the output (gggg instead of ffff).

Problems of this kind (input data is XML and output dats is also XML) are usually
solved with the XSL language. From this example we learn that gawk-xml is an adequate
tool for reading the input data. But producing the tagged structure of the output data
(with simple print commands) is not as elegant as some users like it.

6.2 Convert XMLTV file to tabbed ASCII

This problem differs from the previous one in the kind of output data to be produced.
Here we produce tabbed ASCII output from an XML input file. The original poster of
the question had XML data in the XMLTV format (http://xml.coverpages.org/xmltv.
html). XMLTV is a format for storing your knowledge about which TV program (or TV
programme in British English) will be broadcast at which time on which channel. The
original poster gives some example data (certainly not in the most readable form).

To help me get my head around XMLGAWK can someone solve the following.

I have a XMLTV data file from which I want to extract certain data and

write to a tab-delimited flat file.

The XMLTV data is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<tv><programme start="20041218204000 +1000" stop="20041218225000

+1000" channel="Network TEN Brisbane"><title>The

Frighteners</title><sub-title/><desc>A psychic private detective, who

consorts with deceased souls, becomes engaged in a mystery as members

of the town community begin dying mysteriously.</desc><rating

system="ABA"><value>M</value></rating><length

units="minutes">130</length><category>Horror</category></programme><programme

start="20041218080000 +1000" stop="20041218083000 +1000"

channel="Network TEN Brisbane"><title>Worst Best

Friends</title><sub-title>Better Than Glen</sub-title><desc>Life’s

like that for Roger Thesaurus - two of his best friends are also his

http://xml.coverpages.org/xmltv.html
http://xml.coverpages.org/xmltv.html

Chapter 6: Problems from the newsgroups comp.text.xml and comp.lang.awk 45

worst enemies!</desc><rating

system="ABA"><value>C</value></rating><length

units="minutes">30</length><category>Children</category></programme></tv>

The flate file needs to be as follows:

channel<tab>programme

start<tab>length<tab>title<tab>description<tab>rating value

So the first record would read:

Network TEN Brisbane<tab>2004-12-18 hh:mm<tab>130<tab>The

Frighteners<tab>A psychic private detective, who consorts with

deceased souls, becomes engaged in a mystery as members of the town

community begin dying mysteriously.<tab>M

So, he wants an ASCII output line for each node of kind programme. The proper outline
of his example input looks like this:

tv

programme channel=’Network TEN Brisbane’ start=’20041218204000 +1000’ stop=’20041218225000+1000’

title

sub-title

desc

rating system=’ABA’

value

length units=’minutes’

category

programme channel=’Network TEN Brisbane’ start=’20041218080000 +1000’ stop=’20041218083000 +1000’

title

sub-title

desc

rating system=’ABA’

value

length units=’minutes’

category

Printing the desired output is not as easy as in the previous section. Here, much data
is stored as character data in the nodes and only a few data items are stored as attributes.
In gawk-xml it is much easier to work with attributes than with character data. This sets
gawk-xml apart from XSL, which treats both kinds of data in a more uniform way.

In the action after the BEGIN pattern we can see how easy it is to produce tabbed ASCII
output (i.e. separating output fields with TAB characters): just set the OFS variable to
"\t". Another easy task is to collect the information about the channel and the start
time of a program on TV. These are stored in the attributes of each programme node.
So, upon entering a programme node, the attributes are read and their content stored for
later work. Why can’t we print the output line immediately upon entering the node ?
Because the other data bits (length, title and description) follow later in nested nodes. As
a consequence, data collection is completed only when we are leaving the programme node.

46 XML Processing With gawk

Therefore, the printing of tabbed output happens in the action after the XMLENDELEM ==

"programme" pattern.

@load "xml"

BEGIN { OFS= "\t" }

XMLSTARTELEM == "programme" {

channel = XMLATTR["channel"]

start = XMLATTR["start"]

data = ""

}

XMLCHARDATA { data = $0 }

XMLENDELEM == "desc" { desc = data }

XMLENDELEM == "length" { leng = data }

XMLENDELEM == "title" { title = data }

XMLENDELEM == "value" { value = data }

XMLENDELEM == "programme" {

print channel, substr(start,1,4) "-" substr(start,5,2) "-" substr(start,7,2) " " \

substr(start,9,2) ":" substr(start,11,2), leng, title, desc, value

desc = leng = title = value = ""

}

What’s left to do is collecting character data. Each time we come across some character
data, we store it in a variable data for later retrieval. At this moment we don’t know yet
what kind of character data this is. Only later (when leaving the desc, length, title
or value node) can we assign the data to its proper destination. This kind of deferred
assignment of character data is typical for XML parsers following the streaming approach:
they see only one data item at a time and the user has to take care of storing data bits
needed later. XML Transformation languages like XSL don’t suffer from this shortcoming.
In XSL you have random access to all information in the XML data. It is up to the user to
decide if the problem at hand should be solved with a streaming parser (like gawk-xml) or
with a DOM parser (http://www.w3.org/TR/REC-DOM-Level-1/) (like XSL). If you want
to use gawk-xml and still enjoy the comfort of easy handling of character data, you should
use the xmllib (see Chapter 4 [Some Convenience with the xmllib library], page 31) or
the xmltree (see Chapter 5 [DOM-like access with the xmltree library], page 41) library
described elsewhere.

6.3 Finding the minimum value of a set of data

Up to now we have seen examples whose main concern was finding and re-formatting of
XML input data. But sometimes reading and printing is not enough. The original poster
of the following example needs the shortest value of attribute value in all month tags. He
refers explicitly to a solution in XSL which he tried, mentioning some typical problem he
had with XSL templates.

I’m trying to find the minimum value of a set of data (see below).

I want to compare the lengths of these attribute values and display

the lowest one.

This would be simple if I could re-assign values to a variable,

but from what I gather I can’t do that. How do I keep track of the

http://www.w3.org/TR/REC-DOM-Level-1/

Chapter 6: Problems from the newsgroups comp.text.xml and comp.lang.awk 47

lowest value as I loop through? My XSL document only finds the length

of each string and prints it out (for now). I can write a template

that calls itself for recursion, but I don’t know how to keep the

minimum value readially available as I go through each loop.

Thanks,

James

XML Document

=============================

<calendar name="americana">

<month value="January"/>

<month value="February"/>

<month value="March"/>

<month value="April"/>

<month value="May"/>

<month value="June"/>

<month value="July"/>

<month value="August"/>

<month value="September"/>

<month value="October"/>

<month value="November"/>

<month value="December"/>

</calendar>

The solution he looks for is the value May. Simple minds like ours simply go through the
list of month tags from top to bottom, always remembering the shortest value found up to
now. Having finished the list, the remembered value is the solution. Look at the following
script and you will find that it follows the path of our simple-minded approach.

@load "xml"

XMLSTARTELEM == "month" {

Initialize shortest

if (shortest == "")

shortest = XMLATTR["value"]

Find shortest value

if (length(XMLATTR["value"]) < length(shortest))

shortest = XMLATTR["value"]

}

END { print shortest }

A solution in XSL is not as easy as this. XSL is a functional language, as such being
mostly free from programming concepts like the variable. It is one of the strengths of func-
tional languages that they are mostly free from side-effects and global variables containing
values are (conceptually speaking) side-effects. Therefore, a solution in XSL employs the
use of so-called templates which invoke each other recursively.

Examples like this shed some light on the question why XSL is so different from other
languages and therefore harder to learn for most of us. As can be seen from this simple

48 XML Processing With gawk

example, the use of recursion is unavoidable in XSL. Even for the simplest of all tasks. As a
matter of fact, thinking recursively is not the way most software developers prefer to work
in daily life. Ask them. When did you use recursion for the last time in your C or C++ or
AWK programs ?

6.4 Updating DTD to agree with its use in doc’s

A few months after I wrote Section 7.6 [Generating a DTD from a sample file], page 70,
someone posted a request for a similar tool in the newsgroup comp.text.xml (news://comp.
text.xml).

A few years ago my department defined a DTD for a projected class of

documents. Like the US Constitution, this DTD has details that are

never actually used, so I want to clean it up. Is there any tool that

looks at existing documents and compares with the DTD they use?

[I can think of other possible uses for such a tool, so I thought

someone might have invented it. I have XML Spy but do not see a feature

that would do this.]

What the original poster needs is a tool for reading a DTD and finding out if the sample
files actually use all the parts of the DTD. This is not exactly what the DTD generator
in Section 7.6 [Generating a DTD from a sample file], page 70, does. But it would be a
practical solution to let the DTD generator produce a DTD for the sample files and compare
the produced DTD with the old original DTD file.

Someone else posted an alternative solution, employing a bunch of tools from the Unix
tool set:

I did this as part of a migration from TEI SGML to XML. Basically:

a) run nsgmls over the documents and produce ESIS

b) use awk to extract the element type names

c) sort and uniq them

d) use Perl::SGML to read the DTD and list the element type names

e) sort them

f) caseless join the two lists with -a to spit out the non-matches

If you’re not using a Unix-based system, I think Cygwin can run these tools.

Whatever solution you prefer, these tools serve the user well on the most popular plat-
forms available.

6.5 Working with XML paths

Most programming languages today offer some support for reading XML files. But unlike
gawk-xml, most other languages map the XML file to a tree-like memory-resident data
structure. This allows for convenient access of all elements of the XML file in any desired
order; not just sequentially one-at-a-time like in gawk-xml. One user of such a language
came up with a common problem in the newsgroup comp.text.xml (news://comp.text.
xml) and asked for a solution. When reading the following XML data, notice the two

news://comp.text.xml
news://comp.text.xml
news://comp.text.xml
news://comp.text.xml

Chapter 6: Problems from the newsgroups comp.text.xml and comp.lang.awk 49

item elements containing structurally similar sub-elements. Each item has a PPrice and a
BCQuant sub-element, containg price and quantity of the items. The user asked

I have an XML like this:

<?xml version="1.0" encoding="UTF-8"?>

<invoice>

<bill>

<BId>20</BId>

<CId>73</CId>

<BDate>2006-01-10</BDate>

<BStatus>0</BStatus>

</bill>

<billitems>

<item>

<PName>Kiwi</PName>

<PPrice>0.900</PPrice>

<PId>1</PId>

<BCQuant>15</BCQuant>

</item>

<item>

<PName>Apfel</PName>

<PPrice>0.500</PPrice>

<PId>3</PId>

<BCQuant>10</BCQuant>

</item>

</billitems>

</invoice>

Now I want to have the sum of /invoice/billitems/item/BCQuant * /invoice/billitems/item/PPrice

(=total price)

His last sentence sums it all up: He wants the total cost over all items, yielding the sum-
mation of the product of PPrice and BCQuant. He identifies the variables to be multiplied
with paths which resemble file names in a Unix file system. The notation

/invoice/billitems/item/BCQuant * /invoice/billitems/item/PPrice

is quite a convenient way of addressing variables in an XML document. Some program-
ming languages allow the user to apply this notation directly for addressing variables. For
users of these languages it is often hard to adjust their habits to gawk-xml’s way of tackling
a problem. In gawk-xml, it is not possible to use such paths for direct access to variables.
But it is possible to use such paths in AWK patterns for matching the current location in the
XML document. Look at the following solution and you will understand how to apply paths
in gawk-xml. The crucial point to understand is that there is a predefined variable XMLPATH
which always contains the path of the location which is currently under observation. The
very first line of the solution is the basis of access to the variables PPrice and BCQuant.
Each time some character data is read, the script deposits its content into an associative
array data with the path name of the variable as the index into the array. As a consequence,

50 XML Processing With gawk

this associative array data maps the variable name (/invoice/billitems/item/BCQuant)
to its value (15), but only for the short time interval when one XML element item is being
read.

@load "xml"

XMLCHARDATA { data[XMLPATH] = $0 }

XMLENDELEM == "item" {

sum += data["/invoice/billitems/item/BCQuant"] * \

data["/invoice/billitems/item/PPrice"]

}

END { printf "Sum = %.3f\n",sum }

The summation takes places each time when the reading of one element item is com-
pleted; when XMLENDELEM == "item". At this point in time the quantity and the price
have definitely been stored in the array data. After completion of the XML document, the
summation process has ended and the only thing left to do is printing the result.

This simple technique (mapping a path to a value with data[XMLPATH] = $0) is the key
to later accessing data somewhere else in the tree. Notice the subtle difference between
languages like XSL which store the complete XML document in a tree (DOM (http://
www.w3.org/TR/REC-DOM-Level-1/)) and gawk-xml. With gawk-xml only those parts of
the tree are stored in precious memory which are really necessary for random access. The
only inconvenience is that the user has to identify these parts himself and store the data
explicitly. Other languages will do the storage implicitly (without writing any code), but
the user has abandoned control over the granularity of data storage.

After a detailed analysis you might find a serious limitation in this simple approach. It
only works for a character data block inside a markup block when there is no other tag inside
this markup block. In other words: Only when the node in the XML tree is a terminal node
(a leaf, like number 3, 5, 6, 8, 9, 11, 12 in Figure 1.3 and Figure 1.2), will character data
be stored in data[XMLPATH] as expected. If you are also interested in accessing character
data of non-terminal nodes in the XML tree (like number 2, 4, 7, 10), you will need a more
sophisticated approach:

@load "xml"

XMLSTARTELEM { delete data[XMLPATH] }

XMLCHARDATA { data[XMLPATH] = data[XMLPATH] $0 }

The key difference is that the last line now successively accumulates character data
blocks of each non-terminal node while going through the XML tree. Only after starting
to read another node of the same kind (same tag name, a sibling) will the accumulated
character data be cleared. Clearing is really necessary, otherwise the character data of all
nodes of same kind and depth would accumulate. This kind of accumulation is undesirable
because we expect character data in one data[XMLPATH] to contain only the text of one
node and not the text of other nodes at the same nesting level. But you are free to adapt
this behavior to your needs, of course.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

Chapter 7: Some Advanced Applications 51

7 Some Advanced Applications

Unlike the previous chapter, this chapter really provides complete application programs
doing non-trivial work. Inspite of the sophisticated nature of the tasks, the source code of
some of these applications still fits onto one page. But most of the source code had to be
split up into two or three parts.

7.1 Copying and Modifying with the xmlcopy.awk library
script

XML data is traditionally associated with Internet applications because this data looks so
similar to the HTML data used on the Internet. But after more than 10 years of use, the
XML data format has been found to be useful in many more areas, which have different
needs. For example, data measured periodically in remote locations is nowadays often
encoded as XML data. It is not only the improved readability of XML data (as opposed
to proprietary binary formats of the past), but also the tree structure of tagged XML data
that is so pleasant for users. If you need to add one more measured data type to your
format, no problem, the measuring device just adds an XML attribute or another tag to the
XML data tree. The application software reading the data can safely ignore the additional
data type and is still able to read the new data format. So far so good. But then a device
sends us data like the one in Figure 7.1.

<?xml version="1.0"?>

<MONITORINGSTATIONS>

<C_CD>ES</C_CD>

<DIST_CD>ES100</DIST_CD>

<NAME>CATALUÑA</NAME>
<MONITORINGSTATION>

<EU_CD>ES_1011503</EU_CD>

<MS_CD>1011503</MS_CD>

<LON>0,67891</LON>
<LAT>40.98765</LAT>

<PARAMETER>Particulate Matter < 10 µm</PARAMETER>

<STATISTIC>Days with maximum value > 100 ppm</STATISTIC>

<VALUE>10</VALUE>

<URL>http://www.some.domain.es?query=1&argument=2</URL>

</MONITORINGSTATION>

</MONITORINGSTATIONS>

Figure 7.1: The file remote_data.xml contains data measured in a remote location

If you skim over the data, you might find three places that look odd:

• Inside the NAME tag, the capital letter N with tilde in CATALU ~NA.

• Inside the LON tag, the comma used as decimal separator for a floating point number.

• Inside the PARAMETER tag, the µ symbol encoded as µ

What we need is a script that rectifies these quirks on the XML data while leaving the
tree structure untouched. To be more precise: We need a script that

• Converts all the funny special characters to the character encoding we need.

52 XML Processing With gawk

• Replaces the comma with a decimal point, but only in the numbers inside a LON tag.

• Copies everything else verbatim as it was in the original XML data.

You can find a solution in Figure 7.2. It begins with an include statement that includes a
library script named xmlcopy.awk. In the second line, we set the desired character encoding
before any data is read. This is obvious. But why is the encoding name ("ISO-8859-1")
copied into the XMLATTR["ENCODING"] variable ? Didn’t we learn in Section 3.4 [Character
data and encoding of character sets], page 23, that XMLATTR["ENCODING"] reflects the encod-
ing of the input data and that there is no use in overwriting this read-only variable ? That’s
true, the gawk-xml reader simply ignores anything we write into XMLATTR["ENCODING"].
But in a moment you will see that a function inside the library script evaluates this faked
encoding variable. The fourth line of the script is obvious again: Inside character data of a
LON tag, the comma is replaced with a decimal point. And finally, the last line contains
the invocation of the XmlCopy() function.

@include xmlcopy

BEGIN { XMLCHARSET = "ISO-8859-1" }

XMLATTR["VERSION"] { XMLATTR["ENCODING"] = XMLCHARSET }

XMLCHARDATA && XMLPATH ~ /\/LON$/ { gsub(",", ".") }

{ XmlCopy() }

Figure 7.2: The script modify.awk slightly modifies the XML data

All the magic of evaluating the faked encoding name and copying everything is done
inside the library script. Just like the getXMLEVENT.awk that was explained in Section 2.3
[A portable subset of gawk-xml], page 17, this library script may be found in one of several
places:

• The gawk-xml distribution file contains a copy in the awklib/xml directory.

• If gawk-xml has already been installed on your host machine, a copy of the file should be
in the directory of shared source (which usually resides at a place like /usr/share/awk/
on GNU/Linux machines).

Have a look at your copy of the xmlcopy.awk library script. Notice that the script
contains nothing but the declaration of the XmlCopy() function. Also notice that the
function gets invoked only after all manipulations on the data have been done. The result
of a successful run can be seen in Figure 7.3. Shortly after opening the input file, an
XMLEVENT of type DECLARATION occurs, but there is no XMLATTR["ENCODING"] variable set
because the input data doesn’t contain such a declaration. That’s the place where our script
in Figure 7.2 comes in and sets the declaration in the right moment. So, the XmlCopy()

function will happily print an encoding name.

Chapter 7: Some Advanced Applications 53

gawk -f modify.awk remote_data.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<MONITORINGSTATIONS>

<C_CD>ES</C_CD>

<DIST_CD>ES100</DIST_CD>

<NAME>CATALU ~NA</NAME>

<MONITORINGSTATION>

<EU_CD>ES_1011503</EU_CD>

<MS_CD>1011503</MS_CD>

<LON>0.67891</LON>
<LAT>40.98765</LAT>

<PARAMETER>Particulate Matter < 10 µm</PARAMETER>
<STATISTIC>Days with maximum value > 100 ppm</STATISTIC>

<VALUE>10</VALUE>

<URL>http://www.some.domain.es?query=1&argument=2</URL>

</MONITORINGSTATION>

</MONITORINGSTATIONS>

Figure 7.3: The output data of modify.awk is slightly modified

7.2 Reading an RSS news feed

The Internet is a convenient source of news data. Most of the times we use a browser to read
the HTML files that are transported via the HTTP protocol to us. But sometimes there is no
browser at hand or we don’t want the news data to be visualized immediately. A news ticker
displaying news headings in a very small window is an example. For such cases, a special
news format has been established, the RSS format (http://www.rss-specifications.
com). The protocol for transporting the data is still HTTP, but now the content is not
HTML anymore, but XML with a simple structure (see Figure 7.4 for an example). The
root node in the example tells us that we have received data structured according to version
0.91 of the RSS specification. Node number 2 identifies the news channel to us; augmented
by its child nodes 3, 4 and 5, which contain title, link and description of the source. But
we are not interested in these; we are interested in the titles of the news items. And those
are contained in a sequence of nodes like node 6 (only one of them being depicted here).

What we want as textual output is a short list of news titles – each of them numbered,
titled and linked like in Figure 7.5. How can we collect the data for each news item while
traversing all the nodes and how do we know when we have finished collecting data of one
item and we are ready to print ? The idea is to wait for the end of an item such as node 6.
Notice that the tree is parsed depth-first, so when leaving node 6 (when pattern XMLENDELEM

== "item" triggers), its child nodes 7 and 8 have already been parsed earlier. The most
recent data in nodes 7 and 8 contained the title and the link to be printed. You may ask
How do we access data of a node that has already been traversed earlier ? The answer is
that we store textual data in advance (when XMLCHARDATA triggers). At that moment
we don’t know yet if the stored data is title or link, but when XMLENDELEM == "title"

triggers, we know that the data was a title and we can remember it as such. I know this
sounds complicated and you definitely need some prior experience in AWK or event-based
programming to grasp it.

http://www.rss-specifications.com
http://www.rss-specifications.com

54 XML Processing With gawk

If you are confused by these explanations, you will be delighted to see that all this
mumbling is contained in just 4 lines of code (inside the while loop). It is a bit surprising
that these 4 lines are enough to select all the news items from the tree and ignore nodes 3, 4
and 5. How do we manage to ignore node 3, 4 and 5 ? Well, actually we don’t ignore them.
They are title and link nodes and their content is stored in the variable data. But the
content of nodes 3 and 4 never gets printed because printing happens only when leaving a
node of type item.

rss

version='0.91'
channel

2

title

3

link4

description

5

item

6

title

7

link8

pubDate

9

author

10

Figure 7.4: This is an example node structure of XML data from an RSS news feed

1. Playing the waiting game http://www.theinquirer.net/?article=18979

2. Carbon-dating the Internet http://www.theinquirer.net/?article=18978

3. LCD industry walking a margin tightrope http://www.theinquirer.net/?article=18977

4. Just how irritating can you get? http://www.theinquirer.net/?article=18976

5. US to take over the entire Internet http://www.theinquirer.net/?article=18975

6. AMD 90 nano shipments 50% by year end http://www.theinquirer.net/?article=18974

Figure 7.5: These are news titles from an RSS news feed

It turns out that traversing the XML file is the easiest part. Retrieving the file from the
Internet is a bit more complicated. It would have been wonderful if the news data from
the Internet could have been treated as XML data at the moment it comes pouring in hot
off the rumour mill (http://www.theinquirer.net/feeds/rss). But unfortunately, the
XML data comes with a header, which does not follow the XML rules – it is an HTTP
header. Therefore, we first have to swallow the HTTP header, then read all the lines from
the news feed as ASCII lines and store them into a temporary file. After closing the tem-

http://www.theinquirer.net/feeds/rss

Chapter 7: Some Advanced Applications 55

porary file, we can re-open the file as an XML file and traverse the news nodes as described
above.

@load "xml"

BEGIN {

if (ARGC != 3) {

print "get_rss_feed - retrieve RSS news via HTTP 1.0"

print "IN:\n host name and feed as a command-line parameter"

print "OUT:\n the news content on stdout"

print "EXAMPLE:"

print " gawk -f get_rss_feed.awk www.TheInquirer.Net inquirer.rss"

print "JK 2004-10-06"

exit

}

host = ARGV[1]; ARGV[1] = ""

feed = ARGV[2]; ARGV[2] = ""

Switch off XML mode while reading and storing data.

XMLMODE=0

When connecting, use port number 80 on host

HttpService = "/inet/tcp/0/" host "/80"

ORS = RS = "\r\n\r\n"

print "GET /" feed " HTTP/1.0" |& HttpService

HttpService |& getline Header

We need a temporary file for the XML content.

feed_file="feed.rss"

Make feed_file an empty file.

printf "" > feed_file

Put each XML line into feed_file.

while ((HttpService |& getline) > 0)

printf "%s", $0 >> feed_file

close(HttpService) # this is optional since connection is empty

close(feed_file) # this is essential since we re-read the file

Read feed_file (XML) and print a simplified summary (ASCII).

XMLMODE=1

XMLCHARSET="ISO-8859-1"

While printing, use \n as line separator again.

ORS="\n"

while ((getline < feed_file) > 0) {

if (XMLCHARDATA) { data = $0 }

if (XMLENDELEM == "title") { title = data }

if (XMLENDELEM == "link") { link = data }

if (XMLENDELEM == "item") { print ++n ".\t" title "\t" link }

}

}

You can find more info about the data coming from RSS news feeds in the fine article
What is RSS (http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html). Digging

http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html

56 XML Processing With gawk

deeper into details you will find that there are many similar structural definitions which
all call themselves RSS, but have differing content. Our script above was written in such a
way to make sure that the script understands all different RSS sources, but this could only
be achieved at the expense of leaving details out.

There is another problem with RSS feeds. For example, Yahoo also offers RSS news
feeds. But if you use the script above for retrieval, Yahoo will send HTML data and not
proper XML data. This happens because the RSS standards were not properly defined and
Yahoo’s HTTP server does not understand our request for RSS data.

7.3 Using a service via SOAP

In Section 7.2 [Reading an RSS news feed], page 53, we have seen how a simple service on
the Internet can be used. The request to the service was a single line with the name of
the service. Only the response of the server consisted of XML data. What if the request
itself contains several parameters of various types, possibly containing textual data with
newline characters or foreign symbols ? Classical services like Yahoo’s stock quotes have
found a way to pass tons of parameters by appending the parameters to the GET line of the
HTTP request. Practice has shown that such overly long GET lines are not only awkward
(which we could accept) but also insufficient when object oriented services are needed. The
need for a clean implementation of object oriented services was the motivation behind the
invention of the SOAP protocol (http://www.w3.org/TR/soap). Instead of compressing
request parameters into a single line, XML encoded data is used for passing parameters
to SOAP services. SOAP still uses HTTP for transportation, but the parameters are now
transmitted with the POST method of HTTP (which allows for passing data in the body of
the request, unlike the GET method).

In this section we will write a client for a SOAP service. You can find a very short and
formalized description of the Barnes & Noble Price Quote service (http://www.ibm.com/
developerworks/library/x-tipjaxrpc/) on the Internet. The user can send the ISBN of
a book to this service and it will return him some XML data containing the price of the book.
You may argue that this example service needs only one parameter and should therefore
be implemented without SOAP and XML. This is true, but the SOAP implementation is
good enough to reveal the basic principles of operation. If you are not convinced and would
prefer a service which really exploits SOAP’s ability to pass structured data along with
the request, you should have a look at a list on the Internet, which presents many publicly
available SOAP services (http://www.soapclient.com/XmethodsServices.html). I urge
you to look this page up, it is really enlightening what you can find there. Anyone interested
in the inner working of more complex services should click on the Try it link of an example
service. Behind the Try it link is some kind of debugger for SOAP requests, revealing the
content of request and response in Pseudocode, raw, tree or interactive XML rendering. I
have learned much from this SOAPscope.

The author of the Barnes & Noble Price Quote service (Mustafa Basgun) has also written
a client for his service. In a fine article on the Internet, the author described how he
implemented a GUI-based client interface with the help of Flash MX. From this article, we
take the following citation, which explains some more details about what SOAP is:

Simple Object Access Protocol (SOAP) is a lightweight protocol for exchange
of information in a decentralized, distributed environment. It is an XML based

http://www.w3.org/TR/soap
http://www.ibm.com/developerworks/library/x-tipjaxrpc/
http://www.ibm.com/developerworks/library/x-tipjaxrpc/
http://www.soapclient.com/XmethodsServices.html
http://www.soapclient.com/XmethodsServices.html

Chapter 7: Some Advanced Applications 57

protocol that consists of three parts: an envelope that defines a framework for
describing what is in a message and how to process it, a set of encoding rules
for expressing instances of application-defined datatypes, and a convention for
representing remote procedure calls and responses.

All of the parts he mentions can be seen in the example in Figure 7.6. The example shows
the rendering (as a degenerated tree) of a SOAP request in XML format. The root node is
the envelop mentioned in the citation. Details on how to process the XML data (Schema
and encoding) are declared in the attributes of the root node. Node number 3 contains the
remote procedure call getPrice that we will use to retrieve the price of a book whose ISBN
is contained in the character data of node number 4. Notice that node 4 contains not only
the ISBN itself but also declares the data type xs:string of the parameter passed to the
remote procedure getPrice (being the ISBN).

soap:Envelope

xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/'

xmlns:n='urn:xmethods-BNPriceCheck'

xmlns:xs='http://www.w3.org/2001/XMLSchema'

xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

soap:Body

2

n:getPrice

3

isbn

xsi:type='xs:string'

4

Figure 7.6: Request for a book price in SOAP format

Before we start coding the SOAP client, we have to find out how the response to this
request will look like. The tree in Figure 7.7 is the XML data which comes as a response
and that we have to traverse when looking for the price of the book. A proper client would

58 XML Processing With gawk

analyze the tree thoroughly and first watch out for the type of node encountered. The
structure of Figure 7.7 will only be returned if the request was successful; if the request had
failed, we would be confronted with different kinds of nodes describing the failure. It is one
of the advantages of SOAP that the response is not a static number or string, but a tree
with varying content. Error messages are not simply numbered in a cryptic way, they come
as XML elements with specific tag names and character data describing the problem. But
at the moment, we are only interested in the successful case of seeing node 4 (tag return),
being of type xsd:float and containing the price as character data.

SOAP-ENV:Envelope

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

SOAP-ENV:Body

2

ns1:getPriceResponse

SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'

xmlns:ns1='urn:xmethods-BNPriceCheck'

3

return

xsi:type='xsd:float'

4

Figure 7.7: Response to a book price request in SOAP format

The first part of our SOAP client in Figure 7.8 looks very similar to the RSS client. The
isbn is passed as a parameter from the command line while the host name and the service
identifier soap are fixed. Looking at the variable response, you will recognize the tree from
Figure 7.6. Only the isbn is not fixed but inserted as a variable into the XML data that
will later be sent to the SOAP server.

Chapter 7: Some Advanced Applications 59

@load "xml"

BEGIN {

if (ARGC != 2) {

print "soap_book_price_quote - request price of a book via SOAP"

print "IN:\n ISBN of a book as a command-line parameter"

print "OUT:\n the price of the book on stdout"

print "EXAMPLE:"

print " gawk -f soap_book_price_quote.awk 0596000707"

print "JK 2004-10-17"

exit

}

host = "services.xmethods.net" # The name of the server to contact.

soap = "soap/servlet/rpcrouter" # The identifier of the service.

isbn = ARGV[1]; ARGV[1] = ""

Switch off XML mode while reading and storing data.

XMLMODE=0

Build up the SOAP request and integrate "isbn" variable.

request="\

<soap:Envelope xmlns:n=’urn:xmethods-BNPriceCheck’ \

xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope/’ \

xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’ \

xmlns:xs=’http://www.w3.org/2001/XMLSchema’ \

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’> \

<soap:Body> \

<n:getPrice> \

<isbn xsi:type=’xs:string’>" isbn "</isbn> \

</n:getPrice> \

</soap:Body> \

</soap:Envelope>"

Figure 7.8: First part of soap_book_price_quote.awk builds up a SOAP request

The second and third part of our SOAP client resemble the RSS client even more. But
if you compare both more closely, you will find some interesting differences.

• The variable ORS is not used anymore because we handle the header line differently
here.

• The header itself now begins with HTTP’s POST method and not the GET method.

• There are more header lines sent. Most SOAP services require the client to specify the
content type and the content length because the HTTP servers hosting the service are
used to receiving this kind of information.

60 XML Processing With gawk

When connecting, use port number 80 on host.

HttpService = "/inet/tcp/0/" host "/80"

Setting RS is necessary for separating header from XML reply.

RS = "\r\n\r\n"

Send out a SOAP-compliant request. First the header.

print "POST " soap " HTTP/1.0" |& HttpService

print "Host: " host |& HttpService

print "Content-Type: text/xml; charset=\"utf-8\"" |& HttpService

print "Content-Length: " length(request) |& HttpService

Now separate header from request and then send the request.

print "" |& HttpService

print request |& HttpService

Figure 7.9: Second part of soap_book_price_quote.awk sends the SOAP request

Having sent the request, the only thing left to do is receiving the response and traversing
the XML tree. Just like the RSS client, the SOAP client stores the XML response in a file
temporarily and opens this file as an XML file. While traversing the XML tree, our client
behaves very simple minded: character data is remembered and printed as soon as a node
with tag name return occurs.

Receive the reply and save it.

HttpService |& getline Header

We need a temporary file for the XML content.

soap_file="soap.xml"

Make soap_file an empty file.

printf "" > soap_file

Put each XML line into soap_file.

while ((HttpService |& getline) > 0)

printf "%s", $0 >> soap_file

close(HttpService) # this is optional since connection is empty

close(soap_file) # this is essential since we re-read the file

Read soap_file (XML) and print the price of the book (ASCII).

XMLMODE=1

while ((getline < soap_file) > 0) {

if (XMLCHARDATA) { price = $0 }

if (XMLENDELEM == "return") { print "The book costs", price, "US$."}

}

}

Figure 7.10: Third and final part of soap_book_price_quote.awk reads the SOAP
response

Chapter 7: Some Advanced Applications 61

SOAP-ENV:Envelope

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

SOAP-ENV:Body

2

SOAP-ENV:Fault

3

faultcode

4

faultstring

5

faultactor

6

Figure 7.11: Response to a SOAP request in case of an error

What would happen in case of an error ? Each of the following cases would have to be
handled in more detail if we were writing a proper SOAP client.

• When the service does not know the ISBN, it returns -1.0 as the prices. This is not a
problem for our client, but the user has to keep in mind to check for a negative price.

• When the network connection to the SOAP service cannot be established, then the
client might hang for a very long time, doing nothing and finally terminate with an
error, but without a textual answer. Or the client terminates immediately if, for
example, a firewall rejects the request.

• When something is missing in the header of the HTTP request or the XML tree of the
request is not complete, a proper SOAP response will be received. But you will find no
return node in the response (and therefore the client will print nothing). Instead, the
response will contain nodes of type SOAP-ENV:Fault, faultcode, faultstring and
faultactor. This situation is depicted in Figure 7.11.

• When the service terminates abnormally, it will be unable to respond with a proper
XML message. In this case, the hosting HTTP server often inserts a message in its
own idiom (mostly HTML mumbling).

<h1>Error: 400</h1>

Error unmarshalling envelope: SOAP-ENV:VersionMismatch:

62 XML Processing With gawk

Envelope element must be associated with the

’http://schemas.xmlsoap.org/soap/envelope/’ namespace.

I began each of the cases above with the word When because it is not the question if
such a case will ever happen but only when it will happen. When writing software, it is
always essential to distinguish cases that can happen (by evaluating return codes or by
catching exceptions for example). But when writing software that connects to a network
it is inevitable to do so; otherwise the networking software would be unreliable. So, most
real world clients will be much longer than the one we wrote in this section. But in many
cases it is not really complicated to handle error conditions. For example, by inserting the
following single line at the end of the while loop’s body, you can do a first step toward
proper error handling.

if (XMLENDELEM ~ /^fault/) { print XMLENDELEM ":", price }

When the client should ever receive a response like the one in Figure 7.11, it would print
the detected messages contained in nodes 4, 5 and 6.

faultcode: SOAP-ENV:Protocol

faultstring: Content length must be specified.

faultactor: /soap/servlet/rpcrouter

7.4 Loading XML data into PostgreSQL

In the previous section we have seen how XML can be used as a data-exchange-format
during a database query. Using XML in such database retrievals is quite commonplace
today. But the actual storage format for the large databases in the background is usually
not XML. Many proprietary solutions for database storage have established their niche
markets over the decades. These will certainly not disappear just because a geeky new
format like XML emerged out of the blue. As a consequence, the need for conversion of
data between established databases and XML arises frequently in and around commercial
applications. Fortunately, we have the query language SQL as an accepted standard for
expressing the query. But unfortunately, the actual interface (the transport mechanism)
for request and delivery of queries and results is not standardized at all. The rest of this
section describes how this problem was solved by creating a GNU Awk extension for one
specific database: PostgreSQL. All proprietary access mechanisms are encapsulated into an
extension and an application script uses the extension. The problem at hand is to read
a small contact database file (XML, Figure 7.13) and write the data into a PostgreSQL
database with the help of two GNU Awk extensions:

‘xml’ for reading data from an XML file

‘pgsql’ for accessing the database interface of PostgreSQL

So it is not surprising that the application script in Figure 7.12 begins with loading
both extensions. GNU Awk extensions like pgsql are usually implemented so that they
make the underlying C interface (http://www.postgresql.org/docs/8.0/interactive/
libpq.html) accessible to the writer of the application script.

http://www.postgresql.org/docs/8.0/interactive/libpq.html
http://www.postgresql.org/docs/8.0/interactive/libpq.html

Chapter 7: Some Advanced Applications 63

@load "xml"

@load "pgsql"

BEGIN {

Note: should pass an argument to pg_connect containing PQconnectdb

options, as discussed here:

http://www.postgresql.org/docs/8.0/interactive/libpq.html#LIBPQ-CONNECT

Or the parameters can be set in the environment, as discussed here:

http://www.postgresql.org/docs/8.0/interactive/libpq-envars.html

For example, a typical call might be:

pg_connect("host=pgsql_server dbname=my_database")

if ((dbconn = pg_connect()) == "") {

printf "pg_connect failed: %s\n", ERRNO > "/dev/stderr"

exit 1

}

these are the columns in the table

ncols = split("name email work cell company address", col)

create a temporary table

sql = "CREATE TEMPORARY TABLE tmp ("

for (i = 1; i <= ncols; i++) {

if (i > 1)

sql = (sql",")

sql = (sql" "col[i]" varchar")

}

sql = (sql")")

if ((res = pg_exec(dbconn, sql)) !~ /^OK /) {

printf "Cannot create temporary table: %s, ERRNO = %s\n",

res, ERRNO > "/dev/stderr"

exit 1

}

create a prepared insert statement

sql = ("INSERT INTO tmp ("col[1])

for (i = 2; i <= ncols; i++)

sql = (sql", "col[i])

sql = (sql") VALUES ($1")

for (i = 2; i <= ncols; i++)

sql = (sql", $"i)

sql = (sql")")

if ((insert_statement = pg_prepare(dbconn, sql)) == "") {

printf "pg_prepare(%s) failed: %s\n",sql,ERRNO > "/dev/stderr"

exit 1

}

}

Figure 7.12: First part of testxml2pgsql.awk connects to PostgreSQL

64 XML Processing With gawk

For example, the function pg_connect is just a wrapper around a C function with an
almost identical name. This transparency is good practice, but not compulsory. Other
GNU Awk extensions may choose to implement some opacity in the design of the interface.

Unsuccessful connection attempts are reported to the user of the application script before
termination. After a successful connection (with pg_connect), the script tells PostgreSQL
about the structure of the database. This structure is of course inspired by the format of
the contact database in Figure 7.13. Each field in the database (name, email, work, cell,
company address) is declared with an SQL statement that is executed by PostgreSQL. After
creation of this table, PostgreSQL is expected to respond with an OK message, otherwise
the attempt to create the table has to be aborted. Finally, a prepared insert statement tells
PostgreSQL about details (fieldwidths) of the database.

<?xml version="1.0" encoding="utf-8"?>

<contact_database>

<contact>

<name>Joe Smith</name>

<phone type="work">1-212-555-1212</phone>

<phone type="cell">1-917-555-1212</phone>

<email>joe.smith@acme.com</email>

<company>Acme</company>

<address>32 Maple St., New York, NY</address>

</contact>

<contact>

<name>Ellen Jones</name>

<phone type="work">1-310-555-1212</phone>

<email>ellen.jones@widget.com</email>

<company>Widget Inc.</company>

<address>137 Main St., Los Angeles, CA</address>

</contact>

<contact>

<name>Ralph Simpson</name>

<phone type="work">1-312-555-1212</phone>

<phone type="cell">1-773-555-1212</phone>

<company>General Motors</company>

<address>13 Elm St., Chicago, IL</address>

</contact>

</contact_database>

Figure 7.13: The contact database to be stored with PostgreSQL

Now that the structure of the database is known to PostgreSQL, we are ready to read
the actual data. Assuming that the script has been stored in a file testxml2pgsql.awk and
the XML data in a file sample.xml, we can invoke the application like this:

gawk -f testxml2pgsql.awk < sample.xml

Chapter 7: Some Advanced Applications 65

name|email|work|cell|company|address

Joe Smith|joe.smith@acme.com|1-212-555-1212|1-917-555-1212|Acme|32 Maple St., New York, NY

Ellen Jones|ellen.jones@widget.com|1-310-555-1212|<NULL>|Widget Inc.|137 Main St., Los Angeles, CA

Ralph Simpson|<NULL>|1-312-555-1212|1-773-555-1212|General Motors|13 Elm St., Chicago, IL

Notice that the data file is not passed as a parameter to the interpreter, but the data
file is redirected (< sample.xml) to the standard input of the interpreter. This way of
invocation will hide the file’s name from the application script, but still allow the script to
handle incoming XML data conveniently inside the curly braces of Figure 7.14, following the
pattern-action model of AWK. You will also recognize that some fields which were empty in
the XML file appear as <NULL> fields in the output of the script. Obviously, while reading
the XML file, the application script in Figure 7.14 takes care which fields are filled with
data and which are empty in a data record.

{

switch (XMLEVENT) {

case "STARTELEM":

if ("type" in XMLATTR)

item[XMLPATH] = XMLATTR["type"]

else

item[XMLPATH] = XMLNAME

break

case "CHARDATA":

if ($1 != "")

data[item[XMLPATH]] = (data[item[XMLPATH]] $0)

break

case "ENDELEM":

if (XMLNAME == "contact") {

insert the record into the database

for (i = 1; i <= ncols; i++) {

if (col[i] in data)

param[i] = data[col[i]]

}

if ((res = pg_execprepared(dbconn, insert_statement,

ncols, param)) !~ /^OK /) {

printf "Error -- insert failed: %s, ERRNO = %s\n",

res, ERRNO > "/dev/stderr"

exit 1

}

delete item

delete data

delete param

}

break

}

}

Figure 7.14: Second part of testxml2pgsql.awk transmits data to PostgreSQL

66 XML Processing With gawk

Most scripts you have seen so far follow the pattern-action model of AWK in the way
that is described in Section 8.2 [gawk-xml Core Language Interface Summary], page 88,
as Verbose Interface. The script in Figure 7.14 is different in that it employs the Concise
Interface. Each XML event that comes in is analyzed inside a switch statement for its
type. When the Verbose Interface would have called for an XMLSTARTELEM pattern in front
of an action, the Concise Interface looks at the content of XMLEVENT and switches to the
STARTELEM case for an action to be done. The action itself (collecting data from attribute
type or the tag name) remains the same in both styles. The case of CHARDATA will remain
hard to understand, unless you have a look at Section 6.5 [Working with XML paths],
page 48, where the idea of collecting data from terminal XML nodes is explained. Remember
that most of the data in Figure 7.13 is stored as character data in the terminal XML nodes.
Whenever a contact node is finished, it is time to store the collected data into PostgreSQL
and the variables have to be emptied for collecting data of the next contact. All this
collecting and storing data will be repeated until there are no more XML events coming in.
By then, PostgreSQL will contain the complete database.

END {

if (dbconn != "") {

let’s take a look at what we have accomplished

if ((res = pg_exec(dbconn, "SELECT * FROM tmp")) !~ /^TUPLES /)

printf "Error selecting * from tmp: %s, ERRNO = %s\n",

res, ERRNO > "/dev/stderr"

else {

nf = pg_nfields(res)

for (i = 0; i < nf; i++) {

if (i > 0)

printf "|"

printf "%s", pg_fname(res, i)

}

printf "\n"

nr = pg_ntuples(res)

for (row = 0; row < nr; row++) {

for (i = 0; i < nf; i++) {

if (i > 0)

printf "|"

printf "%s",

(pg_getisnull(res,row,i) ? "<NULL>" : pg_getvalue(res,row,i))

}

printf "\n"

}

}

pg_disconnect(dbconn)

}

}

Figure 7.15: Final part of testxml2pgsql.awk reads back data from PostgreSQL

Chapter 7: Some Advanced Applications 67

The third and final part of our application script in Figure 7.15 will help us verify that
everything has been stored correctly. In order to do so, we will also see how a PostgreSQL
database can be read from within our script. Whenever you have an END pattern in a
script, the following action will be triggered after all data has been read; irrespective of
the success of initializations done earlier. The situation is comparable to the try (...)

catch sequence in the exception handling of programming languages of lesser importance.
In such an ”exception handler”, there are very few assertions about the state of variables
that you can rely on. Therefore, before using any variable, you have to check that it is valid.
That’s what’s done first in Figure 7.15: Reading the database makes sense only when it was
actually opened. If it was in fact opened, then it makes sense to transmit an SQL statement
to PostgreSQL. After a successful transmission (and only then) the returned result can be
split up into fields. All fields of all rows are printed, but only for those fields that are
non-empty.

7.5 Converting XML data into tree drawings

While reading Chapter 1 [AWK and XML Concepts], page 5, you might have wondered how
the DocBook file in Figure 1.2 was turned into the drawing of a tree in Figure 1.3. The draw-
ing was not produced manually but with a conversion tool – implemented as a gawk script.
The secret in finding a good solution for an imaging problem always is to find the right tool
to employ. At the AT&T Labs, there is a project group working on GraphViz (http://
www.graphviz.org/), an open source software package for drawing graphs. Graphs are data
structures which are more general than trees, so they include trees as a special case and
the dot tool (http://www.graphviz.org/pdf/dotguide.pdf) can produce nice drawings
like the one in Figure 1.3. Before you go and download the source code of dot, have a look
at your operating system’s distribution media – dot comes for free with most GNU/Linux
distributions.

But the question remains, how to turn an XML file into the image of a graph ? dot only
reads textual descriptions (http://www.graphviz.org/content/dot-language) of graphs
and produces Encapsulated PostScript files, which are suitable for inclusion into documents.
These textual descriptions look like Figure 7.16, which contains the dot source code for the
tree in Figure 1.3. So the question can be recast as how to convert Figure 1.2 into Figure 7.16
? After a bit of comparison, you will notice that Figure 7.16 essentially has one struct line
for each node (containing the node’s name – the tag of the markup block) and one struct
line for each edge in the tree (containing the number of the node to which it points). The
very first struct1 is a bit different. struct1 contains the root node of the XML file. In the
tree, this node has no number but it is framed with a bold line, while all the other nodes
are numbered and are not framed in a special way. In the remainder of this section, we will
find out how the script outline_dot.awk in Figure 7.17 converts an XML file into a graph
description which can be read by the dot tool.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/pdf/dotguide.pdf
http://www.graphviz.org/content/dot-language

68 XML Processing With gawk

digraph G {

rankdir=LR

node[shape=Mrecord]

struct1[label="<f0>book| lang=’en’| id=’hello-world’ "];

struct1 [style=bold];

struct2[label="<f0>bookinfo "];

struct1 -> struct2:f0 [headlabel="2\n\n"]

struct3[label="<f0>title "];

struct2 -> struct3:f0 [headlabel="3\n\n"]

struct4[label="<f0>chapter| id=’introduction’ "];

struct1 -> struct4:f0 [headlabel="4\n\n"]

struct5[label="<f0>title "];

struct4 -> struct5:f0 [headlabel="5\n\n"]

struct6[label="<f0>para "];

struct4 -> struct6:f0 [headlabel="6\n\n"]

struct7[label="<f0>sect1| id=’about-this-book’ "];

struct4 -> struct7:f0 [headlabel="7\n\n"]

struct8[label="<f0>title "];

struct7 -> struct8:f0 [headlabel="8\n\n"]

struct9[label="<f0>para "];

struct7 -> struct9:f0 [headlabel="9\n\n"]

struct10[label="<f0>sect1| id=’work-in-progress’ "];

struct4 -> struct10:f0 [headlabel="10\n\n"]

struct11[label="<f0>title "];

struct10 -> struct11:f0 [headlabel="11\n\n"]

struct12[label="<f0>para "];

struct10 -> struct12:f0 [headlabel="12\n\n"]

}

Figure 7.16: An example of a tree description for the dot tool

Before delving into the details of Figure 7.17, step back for a moment and notice the
structural similarity between this gawk script and the one in Figure 3.2. Both determine the
depth of each node while traversing the tree. In the BEGIN section of Figure 7.17, only the
three print lines were added, which produce the three first lines of Figure 7.16. The same
holds for the one print line in the END section of Figure 7.17, which only finalizes the textual
description of the tree in Figure 7.16. As a consequence, all the struct lines in Figure 7.16
are produced while traversing the tree in the XMLSTARTELEM section of Figure 7.17.

Each time we come across a node, two things have to be done:

1. Insert the node into the drawing.

2. Insert an edge from its parent to the node itself into the drawing.

To simplify identification of nodes, the node counter n is incremented. Then n is ap-
pended to the struct and allows us to identify each node by name. Identifying nodes
through the tag name of the markup block is not possible because tag names are not
unique. At this stage we are ready to insert the node into the drawing by printing a line
like this:

Chapter 7: Some Advanced Applications 69

struct3[label="<f0>title "];

The label of the node is the right place to insert the tag name of the markup block
(XMLSTARTELEM). If there are attributes in the node, they are appended to the label after a
separator character.

@load "xml"

BEGIN {

print "digraph G {"

print " rankdir=LR"

print " node[shape=Mrecord]"

}

XMLSTARTELEM {

n ++

name[XMLDEPTH] = "struct" n

printf("%s", " " name[XMLDEPTH] "[label=\"<f0>" XMLSTARTELEM)

for (i in XMLATTR)

printf("| %s=’%s’", i, XMLATTR[i])

print " \"];"

if (XMLDEPTH==1)

print " " name[1], "[style=bold];"

else

print " " name[XMLDEPTH-1], "->", name[XMLDEPTH] ":f0 [headlabel=\""n"\\n\\n\"]"

}

END { print "}" }

Figure 7.17: outline_dot.awk turns an XML file into a tree description for the dot tool

Now that we have a name for the node, we can draw an edge from its parent node to the
node itself. The array name always contains the identifiers of the most recently traversed
node of given depth. Since we are traversing the tree depth-first, we can always be sure that
the most recently traversed node of a lesser depth is a parent node. With this assertion in
mind, we can easily identify the parent by name and print a line from the parent node to
the node.

struct2 -> struct3:f0 [headlabel="3\n\n"]

The root node (XMLDEPTH==1) is a special case which is easier to handle. It has no
parent, so no edge has to be drawn, but the root node gets a special recognition by framing
it with a bold line.

Now, store the script into a file and invoke it. The output of gawk is piped directly into
dot. dot is instructed to store Encapsulated PostScript output into a file tree.eps. dot

converts this description into a nice graphical rendering in the PostScript format.

gawk -f outline_dot.awk dbfile.xml | dot -Tps2 -o tree.eps

70 XML Processing With gawk

7.6 Generating a DTD from a sample file

We have already talked about validation in Section 3.1 [Checking for well-formedness],
page 19. There, we have learned that gawk does not validate XML files against a DTD. So,
does this mean we have to ignore the topic at all ? No, the use of DTDs is so widespread
that everyone working with XML files should at least be able to read them. There are at
least two good reason why we should take DTDs for serious:

1. If you are given an original DTD (and it is well written), you can learn much more
from looking at the DTD than from browsing through a valid XML example file.

2. In real life, only very few of us will ever have to produce one. But when you are con-
fronted with a large XML file (like the one attached to this posting (http://lists.
w3.org/Archives/Public/www-archive/2004Mar/0169.html)) and you don’t have a
DTD, it will be hard for you to make sense out of it.

In such cases, you wish you had a tool like DTDGenerator – A tool to generate XML
DTDs (http://saxon.sourceforge.net/dtdgen.html). This is a tool which takes a well-
formed XML file and produces a DTD out of it (so that the XML file is valid against the
DTD, of course). Let’s take Figure 1.2 as an example. This is a DocBook file, which has
a well-established DTD named in its header. Imagine the DocBook file was much longer
and you had an application which required reading and processing the file. Would you go
for the complete DocBook DTD and taylor your application to handle all the details in
the DocBook DTD ? Probably not. It is more practical to start with a subset of the DTD
which is good enough to describe the file at hand. A DTD Generator will produce a DTD
which can serve well as a starting point. The DocBook file in Figure 1.2 for example can
be described by the DTD in Figure 7.18. Unlike most DTDs you will find in the wild, this
DTD uses indentation to emphasize the structure of the DTD. Attributes are always listed
immediately after their element name and the sub-elements occuring in one element follow
immediately below, but indented.

You should take some time and try to understand the relationship of the elements and
attributes listed in Figure 7.18 and the example file in Figure 1.2. The first line of Figure 7.18
for example tells you that a book consists of a sequence of elements, which are either a
chapter or a bookinfo. You can verify this by looking at the drawing in Figure 1.3. The
next two lines tell you that a book has two mandatory attributes, lang and id. The rest
of Figure 7.18 is indented and describes all other elements and their attributes in the same
way. Elements that have no other elements included in them have #PCDATA in them.

<!ELEMENT book (chapter | bookinfo)* >

<!ATTLIST book lang CDATA #REQUIRED>

<!ATTLIST book id CDATA #REQUIRED>

<!ELEMENT chapter (sect1 | para | title)* >

<!ATTLIST chapter id CDATA #REQUIRED>

<!ELEMENT sect1 (para | title)* >

<!ATTLIST sect1 id CDATA #REQUIRED>

<!ELEMENT para (#PCDATA) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT bookinfo (title)* >

Figure 7.18: Example of a DTD, arranged to emphasize nesting structure

http://lists.w3.org/Archives/Public/www-archive/2004Mar/0169.html
http://lists.w3.org/Archives/Public/www-archive/2004Mar/0169.html
http://saxon.sourceforge.net/dtdgen.html
http://saxon.sourceforge.net/dtdgen.html

Chapter 7: Some Advanced Applications 71

The rest of this section consists of the description of the script which produced the DTD
in Figure 7.18. The first part of the scripts looks rather similar to Figure 7.17. Both scripts
traverse the tree of nodes in the XML file and accumulate information in a very similar way
(the array name and the variable XMLDEPTH for example). Three additional array variables in
Figure 7.19 are responsible for storing the information needed for generating a DTD later.

1. elem[e] learns all element names and counts how often each element occurs. This is
necessary for knowing their names and determining if a certain element occured always
with a certain attribute.

2. child[ep,ec] learns which element is the child of which other element. This is neces-
sary for generating the details of the <!ELEMENT ...> lines in Figure 7.18.

3. attr[e,a] learns which element has which attributes. This is necessary for generating
the details of the <!ATTLIST ...> lines in Figure 7.18.

@load "xml"

Remember each element.

XMLSTARTELEM {

Remember the parent names of each child node.

name[XMLDEPTH] = XMLSTARTELEM

if (XMLDEPTH>1)

child[name[XMLDEPTH-1], XMLSTARTELEM] ++

Count how often the element occurs.

elem[XMLSTARTELEM] ++

Remember all the attributes with the element.

for (a in XMLATTR)

attr[XMLSTARTELEM,a] ++

}

END { print_elem(1, name[1]) } # name[1] is the root

Figure 7.19: First part of dtd_generator.awk — collecting information

Having completed its traversal of the tree and knowing all names of elements and at-
tributes and also their nesting structure, the action of the END pattern only invokes a
function which starts resolving the relationships of elements and attributes and prints them
in the form of a proper DTD. Notice that name[1] contains the name of the root node of
the tree. This means that the description of the DTD begins with the top level element of
the XML file (as can be seen in the first line of Figure 7.18).

72 XML Processing With gawk

Print one element (including sub-elements) but only once.

function print_elem(depth, element, c, atn, chl, n, i, myChildren) {

if (already_printed[element]++)

return

indent=sprintf("%*s", 2*depth-2, "")

myChildren=""

for (c in child) {

split(c, chl, SUBSEP)

if (element == chl[1]) {

if (myChildren=="")

myChildren = chl[2]

else

myChildren = myChildren " | " chl[2]

}

}

If an element has no child nodes, declare it as such.

if (myChildren=="")

print indent "<!ELEMENT", element , "(#PCDATA) >"

else

print indent "<!ELEMENT", element , "(", myChildren, ")* >"

After the element name itself, list its attributes.

for (a in attr) {

split(a, atn, SUBSEP)

Treat only those attributes that belong to the current element.

if (element == atn[1]) {

If an attribute occured each time with its element, notice this.

if (attr[element, atn[2]] == elem[element])

print indent "<!ATTLIST", element, atn[2], "CDATA #REQUIRED>"

else

print indent "<!ATTLIST", element, atn[2], "CDATA #IMPLIED>"

}

}

Now go through the child nodes of this elements and print them.

gsub(/[\|]/, " ", myChildren)

n=split(myChildren, chl)

for(i=1; i<=n; i++) {

print_elem(depth+1, chl[i])

split(myChildren, chl)

}

}

Figure 7.20: Second part of dtd_generator.awk — printing the DTD

The first thing this function does is to decide whether the element to be printed has
already been printed (if so, don’t print it twice). Proper indentation is done by starting
each printed line with a number of spaces (twice as much as the indentation levels). Next
comes the collection of all child nodes of the current element into the string myChildren.
AWK’s split function is used for breaking up the tuple of elements (parent and child) that
make up an associative array index. Having found all children, we are ready to print the
<!ELEMENT ... > line for this element of the DTD. If an element has no children, then it is
a leaf of the tree and it is marked as such in the DTD. Otherwise all the children found are
printed as belonging to the element.

Finding the right <!ATTLIST ... > line is coded in a similar way. Each attribute is
checked if it has ever occured with the element and if so, it is printed. The distinction
between an attribute that occurs always with the element and an attribute that occurs

Chapter 7: Some Advanced Applications 73

sometimes with the element is the first stage of refinement in this generator. But if you
analyze the generated DTD a bit, you will notice that the DTD is a rather coarse and liberal
DTD.

• The elements are declared in such a way that their children are always allowed to occur
in an arbitrary order.

• The elements which are leafs of the tree are always declared to be #PCDATA.

• The attributes are always declared to be CDATA.

Using the XSD Inference Utility http://msdn2.microsoft.com/en-us/library/aa302302.aspx

Feel free to refine this generator according to your needs. Perhaps, you can even generate
a Schema file along the lines of Microsoft’s XSD Inference Utility, see Using the XSD Infer-
ence Utility (http://msdn2.microsoft.com/en-us/library/aa302302.aspx). The rest
of the function print_elem() should be good enough for further extensions. It takes the
child nodes of the element (which were collected earlier) and uses the function recursively
in order to print each of the children.

7.7 Generating a recursive descent parser from a sample file

It happens rather seldom, but sometimes we have to write a program which reads an XML
file tag by tag and looks very carefully at the context of a tag and the character data
embedded in it. Such programs detect the sequence, indentation and context of the tags
and evaluate all this in an application specific manner, almost like a compiler or an inter-
preter does. These programs are called parsers. Their creation is not trivial and if you ever
have to write a parser, you will be grateful to find a way of producing the first step of a
parser automatically from an example file. Quite naturally, some commercial tools exist
which promise to generate a parser for you. For example, the XMLBooster XMLBooster
(http://www.xmlbooster.com) product generates not only a parser (in any language in
any of the languages C, C++, C#, COBOL, Delphi, Java or Ada) but also convenient struc-
tural documentation and even a GUI for editing your specific XML files. The XMLBooster
uses an existing DTD or Schema file to generate all these things. Unlike the XMLBooster,
we will not assume that any DTD or Schema file exists for given XML data. We want our
parser generator to take specific XML data as input and produce a parser for such data.

In the previous section Section 7.6 [Generating a DTD from a sample file], page 70,
we already saw how an XML file was analyzed and a different file was generated, which
contained the syntactical relationship between different kinds of tags. As we will see later,
a parser can be created in a very similar way. So, in this section we will change the program
from the previous section, leaving everything unchanged, except for the function print_

elem().

Once more, let’s take Figure 1.2 (the DocBook file) as an example. A parser for DocBook
files of this kind could begin like the program in Figure 7.21. In the BEGIN part of the parser,
the very first tag is read by a function NextElement() which we will see later. If this very
first tag is a book tag, then parsing will go on in a function named after the tag. Otherwise,
the parser will assume that the root tag of the XML file was not the one expected and the
parser terminates with an error message. In the function parse_book we see a loop, reading
one tag after the other until the closing book tag is read. In between, each subsequent tag
is checked against the set of allowed tags and another function for handling that tag is

http://msdn2.microsoft.com/en-us/library/aa302302.aspx
http://msdn2.microsoft.com/en-us/library/aa302302.aspx
http://www.xmlbooster.com
http://www.xmlbooster.com

74 XML Processing With gawk

invoked. Unexpected tag names lead to a warning message being emitted, but not to the
termination of the parser.

The most important principle in this parser is that for each tag name, one function exists
for parsing tags of its kind. These functions invoke each other while parsing the XML file
(perhaps recursively, if the XML markup blocks were formed recursively). Each of these
functions has a header with comments in it, naming the attributes which come with a tag
of this name. Now, look at the parse_book function and imagine you had to generate such
a function. Remember how we stored information about each kind of tag when we wrote
the DTD generator. You will find that all the information needed about a tag is already
available, we only have to produce a different kind of output here.

BEGIN {

if (NextElement() == "book") {

parse_book()

} else {

print "could not find root element ’book’"

}

}

function parse_book() {

The ’book’ node has the following attributes:

Mandatory attribute ’lang’

Mandatory attribute ’id’

while (NextElement() && XMLENDELEM != "book") {

if (XMLSTARTELEM == "chapter") {

parse_chapter()

} else if (XMLSTARTELEM == "bookinfo") {

parse_bookinfo()

} else {

print "unknown element ’" XMLSTARTELEM "’ in ’book’ line ", XMLROW

}

}

}

Figure 7.21: Beginning of a generated parser for a very simple DocBook file

Now that the guiding principle (recursive descent) is clear, we can turn to the details.
The hardest problem in understanding the parser generator will turn out to be the danger
of mixing up the kinds of text and data involved. Whenever you turn in circles while trying
to understand what’s going on, remember the kind of data you are thinking about:

• The XML data that has to be parsed by the generated parser.

• The AWK data structures for storing the tag relations.

• The parser generator that we are actually writing.

• The parser generated by our generator.

Traditional language parsers read their input text token by token. The work is divided
up between a low-level character reader and a high-level syntax checker. On the lowest level,

Chapter 7: Some Advanced Applications 75

a token is singled out by the scanner, which returns the token to the parser itself. In a
generated parser for XML data, we don’t need our own scanner because the scanner is hidden
in the XML reader that we use. What remains to be generated is a function for reading the
next token upon each invocation. This token-by-token reader in Figure 7.22 is implemented
in the pull-parser style we have seen earlier. Notice that the function NextElement()

implementing this reader remains the same in each generated parser. While reading the
XML file with getline, the reader watches for any of the following events in the token
stream:

• XMLSTARTELEM is a new tag to be returned.

• XMLENDELEM is the end of a markup block to be returned.

• XMLCHARDATA is text embedded into a markup block.

• XMLERROR is an error indicator, leading to termination.

Text embedded into a markup block is not returned as the function’s return value but
is stored into the global variable data. This function is meant to return the name of a tag
— no matter if it is the beginning or the ending of a markup block. If the caller wants to
distinguish between beginning or ending of a markup block, he can do so by watching if
XMLSTARTELEM or XMLENDELEM is set. Only when the end of an XML file is reached will an
empty string be returned. It is up to the caller to detect when the end of the token stream
is reached.

@load "xml"

function NextElement() {

while (getline > 0 && XMLERROR == "" && XMLSTARTELEM == XMLENDELEM)

if (XMLCHARDATA) data = $0

if (XMLERROR) {

print "error in row", XMLROW ", col", XMLCOL ":", XMLERROR

exit

}

return XMLSTARTELEM XMLENDELEM

}

Figure 7.22: The pull-style token reader; identical in all generated parsers

All the code you have seen in this section up to here was generated code. It makes no
sense to copy this code into your own programs. What follows now is the generator itself.
As mentioned earlier, the generator is identical to the dtd_generator.awk of the previous
section — you only have to replace the function print_elem() with the version you see
in Figure 7.23 and Figure 7.24. The beginning of the function print_elem() is easy to
understand — it generates the function NextElement() as you have seen the function in
Figure 7.22. We only need NextElement() generated once, so we generate it only when
the root tag (depth == 1) is handled. Just like NextElement(), we also need the BEGIN

pattern of Figure 7.21 only once, so it is generated immediately after NextElement().
What follows is the generation of the comments about XML attributes as you have seen
them in Figure 7.21. This coding style should not be new to you if you have studied the
dtd_generator.awk. Notice that each invocation of the print_elem() for non-root tags
(depth > 1) produces one function (which is named after the tag).

76 XML Processing With gawk

function print_elem(depth, element, c, atn, chl, n, i, myChildren) {

if (depth==1) {

print "@load \"xml\""

print "function NextElement() {"

print " while (getline > 0 && XMLERROR == \"\" && XMLSTARTELEM == XMLENDELEM)"

print " if (XMLCHARDATA) data = $0"

print " if (XMLERROR) {"

print " print \"error in row\", XMLROW \", col\", XMLCOL \":\", XMLERROR"

print " exit"

print " }"

print " return XMLSTARTELEM XMLENDELEM"

print "}\n"

print "BEGIN {"

print " if (NextElement() == \"" element "\") {"

print " parse_" element "()"

print " } else {"

print " print \"could not find root element ’" element "’\""

print " }"

print "}\n"

}

if (already_printed[element]++)

return

print "function parse_" element "() {"

print " # The ’" element "’ node has the following attributes:"

After the element name itself, list its attributes.

for (a in attr) {

split(a, atn, SUBSEP)

Treat only those attributes that belong to the current element.

if (element == atn[1]) {

If an attribute occured each time with its element, notice this.

if (attr[element, atn[2]] == elem[element])

print indent " # Mandatory attribute ’" atn[2] "’"

else

print indent " # Optional attribute ’" atn[2] "’"

}

}

print ""

Figure 7.23: The first part of print_elem() in parser_generator.awk

This was the first part of print_elem(). The second part in Figure 7.24 produces the
body of the function (see function parse_book() in Figure 7.21 for a generated example).
In the body of the newly generated function we have a while loop which reads tokens
until the currently read markup block ends with a closing tag. Meanwhile each embedded
markup block will be detected and completely read by another function. Tags of embedded
markup blocks will only be accepted when they belong to a set of expected tags. The rest

Chapter 7: Some Advanced Applications 77

of the function should not be new to you, it descends recursively deeper into the tree of
embedded markup blocks and generates one function for each kind of tag.

print " while (NextElement() && XMLENDELEM != \"" element "\") {"

myChildren=""

for (c in child) {

split(c, chl, SUBSEP)

if (element == chl[1]) {

if (myChildren=="")

myChildren = chl[2]

else

myChildren = myChildren " | " chl[2]

print " if (XMLSTARTELEM == \"" chl[2] "\") {"

print " parse_" chl[2] "()"

printf " } else "

}

}

if (myChildren != "") {

print " {"

printf " print \"unknown element ’\" XMLSTARTELEM \"’"

print " in ’" element "’ line \", XMLROW\n }"

print " }"

} else {

If an element has no child nodes, declare it as such.

print " # This node is a leaf."

print " }"

print " # The character data is now in \"data\"."

}

print "}\n"

Now go through the child nodes of this elements and print them.

gsub(/[\|]/, " ", myChildren)

n=split(myChildren, chl)

for(i=1; i<=n; i++) {

print_elem(depth+1, chl[i])

split(myChildren, chl)

}

}

Figure 7.24: The second part of print_elem() in parser_generator.awk

When the complete parser is generated from the example file, you have a commented
parser that serves well as a starting point for further refinements. Most importantly, you
will add code for evaluation of the XML attributes and for printing results. Although this
looks like an easy start into the parsing business, you should be aware of some limitations
of this approach:

• A tag name in XML may be any valid Unicode name. Since this name is used as a
function name in the generated AWK source code, you will run into problems when
there is a tag name containing an Umlaut character for example: Umlaut characters are

78 XML Processing With gawk

not allowed in AWK function names. You have to avoid using tag names in generated
code and use a mapping from original tag names into enumerated/generated names
instead.

• Roundtrip Engineering is a problem for every code-generation framework. After gen-
erating a parser, what happens if I want to add new tags as they are used in different
example files ? This is a hard problem. Perhaps the best solution is to change the
process of code generation by inserting manual changes to the generated parser not
into the generated parser itself but into a PI (processing instruction) in the example
file. The parser generator must take this PI and copy its content into the generated
code.

• Semantic constraints on XML data are much more easily coded in Schema languages. A
more advanced approach to the parser generation problem might be to take an existing
Schema specification and compile it into a parser. When the Schema language at hand
is itself written in XML, this may look like an easy solution. But when you look at it,
this approach is a real compiler construction job with many pitfalls.

7.8 A parser for Microsoft Excel’s XML file format

The previous two sections about generating text files from an XML example file were rather
abstract and might have confused you. This section will be different. Here, we will put
the program parser_generator.awk to work and see what it’s good for. We will generate
a parser for the kind of XML output that Microsoft’s Excel application produces. Our
starting point will be an XML file that we have retrieved from the Internet.

Before we put the parser generator to work, let’s repeat once more that the parser
generator consists of the source code presented in Figure 7.19, Figure 7.23 and Figure 7.24.
Put these three fragments into a file named parser_generator.awk.

Now is the time to look for an XML file produced by Microsoft Excel that will be used
by the generator. The example file should contain all relevant structural elements and
attributes. Only these will be recognized by the generated parser later. On the Internet I
looked for an example file that contained as much valid elements and attributes as possible.
I found several file which are freely available and could serve well as templates, but none
of them contained all kinds of elements and attributes. Two of the most complete were
the following ones. Invoke these commannds and you will find the two files in your current
working directory:

wget http://ruby.fgcu.edu/courses/CGS1100/excel/PastaMidwest.xml

wget http://ruby.fgcu.edu/courses/CGS1100/excel/Oklahoma2004.xml

If you have some examples of your own, pass their names to the parser generator along
with the others like this:

gawk -f parser_generator.awk PastaMidwest.xml Oklahoma2004.xml > ms_excel_parser.awk

Now you will find a new file ms_excel_parser.awk in your current working directory.
This is the recursive descent parser, ready to parse and recognize all elements that were
present in the template files above. To prove the point, we let the new parser work on the
template files and check if these obey the rules:

Chapter 7: Some Advanced Applications 79

gawk -f ms_excel_parser.awk PastaMidwest.xml

gawk -f ms_excel_parser.awk Oklahoma2004.xml

gawk -f ms_excel_parser.awk xmltv.xml

could not find root element ’Workbook’

Obviously, the file xmltv.xml from Section 6.2 [Convert XMLTV file to tabbed ASCII],
page 44, was the only file that did not obey the rules, which is not surprising. Each XML
file exported from Microsoft Excel has a node of type Workbook as its root node. These
Workbook nodes are parsed by the program ms_excel_parser.awk right at the beginning
in the following function:

BEGIN {

if (NextElement() == "Workbook") {

parse_Workbook()

} else {

print "could not find root element ’Workbook’"

}

}

function parse_Workbook() {

The ’Workbook’ node has the following attributes:

Mandatory attribute ’xmlns:html’

Mandatory attribute ’xmlns:x’

Mandatory attribute ’xmlns’

Mandatory attribute ’xmlns:o’

Mandatory attribute ’xmlns:ss’

while (NextElement() && XMLENDELEM != "Workbook") {

if (XMLSTARTELEM == "Styles") {

parse_Styles()

} else if (XMLSTARTELEM == "Worksheet") {

parse_Worksheet()

} else if (XMLSTARTELEM == "ExcelWorkbook") {

parse_ExcelWorkbook()

} else if (XMLSTARTELEM == "OfficeDocumentSettings") {

parse_OfficeDocumentSettings()

} else if (XMLSTARTELEM == "DocumentProperties") {

parse_DocumentProperties()

} else {

print "unknown element ’" XMLSTARTELEM "’ in ’Workbook’ line ", XMLROW

}

}

}

Figure 7.25: A generated code fragment from ms_excel_parser.awk

If the root node is not a node of type Workbook (like it’s the case with the file xmltv.xml),
then a report about a missing root element is printed. As you can easily see, a Workbook

has several mandatory attributes. The generated parser could be extended to also check

80 XML Processing With gawk

the presence of these. Furthermore, a Workbook is a sequence of nodes of type Styles,
Worksheet, ExcelWorkbook, OfficeDocumentSettings or DocumentProperties.

Chapter 8: Reference of XML features 81

8 Reference of XML features

This chapter is meant to be a reference. It lists features in a precise and comprehensive
way without motivating their use. First comes a section listing all builtin variables and
environment variables used by the gawk-xml extension. Then comes a section explaining
the two different ways that these variables can be used. Finally, we have several sections
explaining libraries which were built upon the gawk-xml extension.

8.1 XML features built into the gawk interpreter

This section presents all variables and functions which constitute the XML extension of
GNU Awk. For each variable one XML example fragment explains which XML code causes
the pattern to be set. After this event has passed, the variable contains the empty string.
So you cannot rely on a variable retaining a value until later, when the same kind of events
sets a different value. Since we are not reading lines (but XML events), the variable $0 is
usually not set to any text value but to the empty string. Setting $0 is seen as a side effect
in XML mode and mentioned as such in this reference.

8.1.1 XMLDECLARATION: integer indicates begin of document

<?xml version="1.0" encoding="UTF-8"?>

If an XML document has a header (containing the XML declaration), then the header
will always precede all other kind of data — even comments, character data and processing
instructions. Therefore the XMLDECLARATION (if there is one at all), will always be the
very first event to be read from the file. When it has occurred, the XMLATTR array will be
populated with the index items VERSION, ENCODING, and STANDALONE.

The very first event holds the version info.

XMLDECLARATION {

version = XMLATTR["VERSION"]

encoding = XMLATTR["ENCODING"]

standalone = XMLATTR["STANDALONE"]

}

Each of the entries in the XMLATTR array only exists if the respective item existed in the
XML data.

8.1.2 XMLMODE: integer for switching on XML processing

This integer variable will not be changed by the interpreter. Its initial value is 0. The user
sets it (to a value other than 0) to indicate that each file opened afterwards will be read as
an XML file. Setting the variable to 0 again will cause the interpreter to read subsequent
files as ordinary text files again.

‘XMLMODE’ = 0: Disable XML parsing for the next file to be opened

‘XMLMODE’ = 1: Enable XML parsing for the next file to be opened

‘XMLMODE’ = -1: Enable XML parsing, and enable concatenated XML documents

It is allowed to have several files opened at the same time, some of them XML files and
others text files. After opening a file in one mode or the other, it is not possible to go on

82 XML Processing With gawk

reading the same file in the other mode by changing the value of XMLMODE. Many users
need to read XML files which have multiple root elements. Such XML files are (strictly
speaking) not really well-formed: Well-formed XML documents have only one root element.
Setting XMLMODE to -1 tells the interpreter to accept XML documents with more than one
root element.

The use of the line ”@load "xml"” sets XMLMODE to -1 as a side-effect. The use of
the command line option ”-l xml’ does the same. So, most users prefer the latter methods
instead of setting XMLMODE directly. Invoking the GNU Awk interpreter by means of the
xmlgawk script has the same side-effect.

8.1.3 XMLSTARTELEM: string holds tag upon entering element

<book id="hello-world" lang="en">

...

</book>

Upon entering a markup block, the XML parser finds a tag (book in the example) and
copies its name into the string XMLSTARTELEM variable. Whenever this variable is set, you
can take its value and store the value in another variable, but you cannot access the tag
name of the enclosing (or the included) markup blocks. As a side effect, the associative array
XMLATTR and the variable $0 are filled. The variable $0 holds the names of the attributes
in the order of occurrence in the XML data. Attribute names in $0 are separated by space
characters. The variables $1 through $NF contain the individual attribute names in the
same order.

8.1.4 XMLATTR: array holds attribute names and values

<book id="hello-world" lang="en">
...

</book>

This associative is always empty, except when XMLSTARTELEM, or XMLDECLARATION, or
XMLSTARTDOCT is true. In all these cases, XMLATTR is used for passing the values of several
named attributes (in the widest sense) to the user.

• Upon setting of XMLSTARTELEM, the array XMLATTR is filled with the names of the
attributes of the currently parsed element. Each attribute name is inserted as an index
into the array and the attribute’s value as the value of the array at this index. Notice
that the array is also empty when XMLENDELEM is set.

• Upon setting of XMLDECLARATION, the array is filled with variables named VERSION,
ENCODING, and STANDALONE, reflecting the parameters of the XML header. Each of
these variables is optional.

• Upon setting of XMLSTARTDOCT, the array is filled with variables named PUBLIC, SYSTEM,
and INTERNAL_SUBSET, reflecting the parameters of the same name within the DTD.
Each of these variables is optional.

In the example we have XMLSTARTELEM and XMLATTR set to

Print all attribute names and values.

XMLSTARTELEM = "book"

XMLATTR["id"] = "hello-world"

XMLATTR["lang"] = "en"

Chapter 8: Reference of XML features 83

$0 = "id lang"

$1 = "id"

$2 = "lang"

NF = 2

8.1.5 XMLENDELEM: string holds tag upon leaving element

<book id="hello-world" lang="en">

<bookinfo>

<title>Hello, world</title>
</bookinfo>
...

</book>

Upon leaving a markup block, the XML parser finds a tag (book in the example) and
copies its name into the string XMLENDELEM variable. This variable is not as useless at it
may seem at first sight. An action triggered by the pattern XMLENDELEM is usually the right
place to process the character data (here Hello, world) that was accumulated inside an
XML element (here title). If the XML element book contains a list of nested elements
bookinfo, then the pattern XMLENDELEM == "book" may trigger an action that processes
the list of bookinfo data, which was collected while parsing the book element. The array
XMLATTR is empty at this time instant.

8.1.6 XMLCHARDATA: string holds character data

<title>Warning</title>

<para>This is still under construction.</para>

Any textual data interspersed between the markup tags is called character data. Each
occurrence of character data is indicated by setting XMLCHARDATA. The actual data is passed
in $0 and may contain any text that is coded in the currently used character encoding. There
are possibly 0 bytes contained in the data. The length of the data in bytes may differ from
the number of characters reported as length($0), for example in Japanesse texts. The
character data reported in $0 need not be byte-by-byte identical to the original XML data
(because of a potentially different encoding). Line breaks are often contained in character
data, like it is the case in the example above. All consecutive character data in the XML
document will be passed in $0 in one turn. Thus, line breaks may be contained in $0.

Collect character data and report it at end of tagged data block.

XMLCHARDATA { data = $0 }

XMLENDELEM == "title" { title = data }

XMLENDELEM == "link" { link = data }

XMLENDELEM == "item" { print "title", title, "contains", item, "and", link }

8.1.7 XMLPROCINST: string holds processing instruction target

<? echo ("this is the simplest, an SGML processing instruction\n"); ?>

Processing instructions begin with <? and end with ?>. The name immediately following
the <? is the target. The rest of the processing instruction is application specific. The target
is passed to the user in XMLPROCINST and the content of the processing instruction is passed
in $0.

84 XML Processing With gawk

Find out what kind of processing instruction this is.

switch (XMLPROCINST) {

case "PHP": print "PI contains PHP source:", $0 ; break

case "xml-stylesheet": print "PI contains stylesheet source:", $0 ; break

}

8.1.8 XMLCOMMENT: string holds comment

<!-- This is a comment -->

Comments in an XML document look the same as in HTML. Whenever one occurs, the
XML parser sets XMLCOMMENT to 1 and passes the comment itself in $0.

Report comments.

XMLCOMMENT { print "comment:", $0 }

8.1.9 XMLSTARTCDATA: integer indicates begin of CDATA

<script type="text/javascript">

<![CDATA[
... unescaped script content may contain any character like < and "...
]]>
</script>

Character data is not allowed to contain a < character because this character has a
special meaning as a tag indicator. The same is true for four other characters. All five
characters have to be escaped (<) when used in an XML document. The CDATA section
in an XML document is a way to avoid the need for escaping. A CDATA section starts with
<![CDATA[and ends with]]>. Everything inside a CDATA section is ignored by the XML
parser, but the content is passed to the user.

Upon occurrence of a CDATA section, XMLSTARTCDATA is set to 1 and $0 holds the content
of the CDATA section. Notice that a CDATA section cannot contain the string]]>, therefore,
nested CDATA sections are not allowed.

8.1.10 XMLENDCDATA: integer indicates end of CDATA

Whenever the XMLENDCDATA is set, the CDATA section has ended and the XML parser starts
parsing the data as XML data again. The closing]]> of the CDATA section is not passed to
the user.

8.1.11 LANG: env variable holds default character encoding

The operating system’s environment at run-time of the GNU Awk interpreter has an envi-
ronment variable LANG, which is part of the locale mechanism of the operating system. Its
value determines the character encoding used by the interpreter. This value is visible to
the user as the initial value of the XMLCHARSET variable.

Print the character encoding of the user’s environment.

BEGIN { print "LANG =", XMLCHARSET }

Sometimes the value of the LANG variable at the shell level is not copied verbatim into
the XMLCHARSET; the operating system may choose to resolve aliases.

Chapter 8: Reference of XML features 85

8.1.12 XMLCHARSET: string holds current character set

<?xml version="1.0" encoding="x-sjis-cp932"?>

This string is initially set to the current character set of the interpreter’s environment
(nl_langinfo(CODESET)). Although it is initially set by the interpreter, this string is meant
to be set by the user when he needs data to be converted to a different character encoding.
The XML header above, for example, is delivered in a Japanese encoding, and it may be
necessary to convert the data to UTF-8 for other applications to read it.

Set the character encoding so that XML data will be converted.

BEGIN { XMLCHARSET = "utf-8" }

Later, when XML files are opened by the interpreter, all XML data will be converted
to the character set whose name was set by the user in XMLCHARSET. Notice that changes
to XMLCHARSET will not take effect immediately, but only on the subsequent opening of any
file. Such changes will affect only the file opened with the changed XMLCHARSET and not
files opened prior to the change.

8.1.13 XMLSTARTDOCT: root tag name indicates begin of DTD

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE greeting [<!ELEMENT greeting (#PCDATA)>]>

<greeting>Hello, world!</greeting>

Valid XML data includes a reference to the DTD against which it should be validated.
The XMLSTARTDOCT variable indicates the beginning of a DTD reference section. Such
DTDs are either embedded into the XML data (like in the example above), or they are
actual references to DTD files (like in the example below). In both cases, the name of the
root tag of the XML data is copied into the variable XMLSTARTDOCT.

<?xml version=’1.0’?>

<!DOCTYPE ListOfNames SYSTEM "Names.dtd">
<ListOfNames lang="English">

The distinction between both cases can be made by looking at the XMLATTR array. Once
more, the XMLATTR array is used for passing the values of several named attributes (in the
widest sense) to the user. If the array has an index INTERNAL_SUBSET, then the DTD is
embedded into the XML data. Otherwise, the optional entries PUBLIC and SYSTEM will
report the system identifier or the public identifier of the referenced DTD.

Find out if DTD exists, and if it is embedded or external.

XMLSTARTDOCT {

root = XMLSTARTDOCT

if ("INTERNAL_SUBSET" in XMLATTR) {

...

} else {

public_id = XMLATTR["PUBLIC"]

system_id = XMLATTR["SYSTEM"]

}

}

In both cases, the DTD itself is not parsed by the XML parser. But any embedded DTD
text is passed as unparsed data in the variable XMLUNPARSED.

86 XML Processing With gawk

8.1.14 XMLENDDOCT: integer indicates end of DTD

Whenever the variable XMLENDDOCT is set, the DTD section has ended and the XML parser
continues parsing the data as tagged XML data again. The closing]> of the DTD section
is not passed to the user.

8.1.15 XMLUNPARSED: string holds unparsed characters

Very few parts of the XML data go unparsed by the XML parser. Any embedded DTD of
an XML document will be detected and reported as such (by setting XMLSTARTDOCT), but
the DTD content itself is reported as unparsed data in XMLUNPARSED.

8.1.16 XMLERROR: string holds textual error description

This string is always empty. It is only set when the XML parser finds an error in the XML
data. The string XMLERROR contains a textual description of the error. The contents of this
text is informal and not guaranteed to be the same on all platforms. Whenever XMLERROR is
non-empty, the variables XMLROW and XMLCOL contain the location of the error in the XML
data.

8.1.17 XMLROW: integer holds current row of parsed item

This integer always contains the number of the line which is currently parsed. Initially, it
is set to 0. Upon opening the first line of an XML file, it is set to 1 and incremented with
each line in the XML data. The incremental reading of lines is done by the XML parser.
Therefore, the notion of a line here has nothing to do with the notion of a record in AWK.
The content of XMLROW does not depend on the setting of RS.

8.1.18 XMLCOL: integer holds current column of parsed item

This integer always contains the number of the column in the current line which is currently
parsed. Initially, it is set to 0. Upon opening the first line of an XML file, it is set to 1 and
incremented with each character in the XML data. At the beginning of each line it is set to
1. The incremental reading of lines is done by the XML parser. Therefore, the notion of a
line here has nothing to do with the notion of a record in AWK. The content of XMLCOL
does not depend on the setting of FS.

8.1.19 XMLLEN: integer holds length of parsed item

This integer always contains the number of bytes of the item which is currently parsed.
Initially, it is set to 0. The number of bytes refers to bytes in the XML data originally
parsed. It is not the same as the number of characters. After the optional conversion to the
character encoding determined by XMLCHARSET the length in XMLLEN may also be different
from the converted length of the XML data item.

8.1.20 XMLDEPTH: integer holds nesting depth of elements

This integer always contains the nesting depth of the element which is currently parsed.
Initially, upon opening an XML file, it is set to 0. Upon entering the first element of an
XML file, it is set to 1 and incremented with each further element (which has not yet been
completed). Upon complete parsing of an element, the variable is decremented.

Chapter 8: Reference of XML features 87

8.1.21 XMLPATH: string holds nested tags of parsed elements

Upon starting the interpreter and opening an XML file, this string is empty. With each
XMLSTARTELEM, the new tag name is appended to XMLPATH with a "/" character in front
of the new tag name. The "/" character (encoded according to the XML file’s character
encoding) serves as a separator between both. With each XMLENDELEM, the old tag name
(and the leading "/") is chopped off XMLPATH. The user may change XMLPATH, but any
change to XMLPATH will be overwritten with the next XML data read.

8.1.22 XMLENDDOCUMENT: integer indicates end of XML data

This integer is always 0. It is only set when the XML parser finds the end of XML data.

8.1.23 XMLEVENT: string holds name of event

This string always contains the name of the event that is currently being processed. Valid
names are DECLARATION STARTDOCT ENDDOCT PROCINST STARTELEM ENDELEM CHARDATA

STARTCDATA ENDCDATA COMMENT UNPARSED ENDDOCUMENT . The names are closely related
to the variables of the same name, that have an XML prefix. Any names coming with this
event are passed in XMLNAME, $0, and XMLATTR. For details about which variable carries
which information, See Figure 8.2.

8.1.24 XMLNAME: string holds name assigned to XMLEVENT

The variable XMLNAME is used for passing data when the variable XMLEVENT contains the
specific event. For details about which variable carries which information, See Figure 8.2.

88 XML Processing With gawk

8.2 gawk-xml Core Language Interface Summary

The builtin variables of the previous section were chosen so that they bear analogy to the
XML parser Expat’s API. Most builtin variables reflect a ”handler” function of Expat’s
API. If you have ever worked with Expat, you will feel at home with gawk-xml. The only
question you will have is how are parameters passed ? This section answers your question
with a tabular overview of variable names and details on parameter passing.

To be precise, there are actually two tables in this chapter.

8.2.1 Verbose Interface - One dedicated predefined variable for
each event class: XMLeventname

In the first table, you will find variable names that can stand by itself as patterns in a
program, triggering an action that handles the respective kind of event. The first column of
the table contains the variable’s name and the second column contains the variable’s value
when triggered. All parameters that you can receive from the XML parser are mentioned
in the remaining columns.

Event variable Value $0 XMLATTR index
(when supplied)

XMLATTR value

XMLDECLARATION 1 — "VERSION"

"ENCODING"

"STANDALONE"

"1.0"

enc. name
"yes"/"no"

XMLSTARTDOCT root
element
name

— "PUBLIC"

"SYSTEM"

"INTERNAL_

SUBSET"

public Id
system Id
1

XMLENDDOCT 1 — — —
XMLPROCINST PI name PI content — —
XMLSTARTELEM elem. name Ordered list of

attribute names
given name(s) given value(s)

XMLENDELEM elem. name — — —
XMLCHARDATA 1 text data — —
XMLSTARTCDATA 1 — — —
XMLENDCDATA 1 — — —
XMLCOMMENT 1 omment text — —
XMLUNPARSED 1 text data — —
XMLENDDOCUMENT 1 — — —

Figure 8.1: Variables for passing XML data in the verbose interface

8.2.2 Concise Interface - Reduced set of variables shared by all
events

Now for the second table of variables. Some people don’t like to remember all the different
names in the table above. They prefer to remember only a minimum of two variable names.
While the first variable (XMLEVENT) contains the kind of event that happened (STARTELEM for
example), the second one (XMLNAME) passes details about it (like the name of the element).

Chapter 8: Reference of XML features 89

All events and their parameters are passed in this manner. But sometimes there is more
than just one parameter to be passed, then we have to rely on $0 and XMLATTR, just like it
was already described in the first table.

XMLEVENT value XMLNAME

value
$0 XMLATTR index

(when supplied)
XMLATTR value

"DECLARATION" — — "VERSION"

"ENCODING"

"STANDALONE"

"1.0"

enc. name
"yes"/"no"

"STARTDOCT" root
element
name

— "PUBLIC"

"SYSTEM"

"INTERNAL_

SUBSET"

public Id
system Id
1

"ENDDOCT" — — — —
"PROCINST" PI name PI content — —
"STARTELEM" elem. name Ordered list of

attribute names
given name(s) given value(s)

"ENDELEM" elem. name — — —
"CHARDATA" — text data — —
"STARTCDATA" — — — —
"ENDCDATA" — — — —
"COMMENT" — comment text — —
"UNPARSED" — text data — —
"ENDDOCUMENT" — — — —

Figure 8.2: Variables for passing XML data in the concise interface

90 XML Processing With gawk

8.3 xmllib

FIXME: This section has not been written yet.

Chapter 8: Reference of XML features 91

8.4 xmlbase

NAME

xmlbase - add some basic functionality to gawk-xml.

USAGE

@include "xmlbase"

result = XmlEscape(str)

result = XmlEscapeQuote(str)

XmlWriteError(message)

XmlCheckError()

DESCRIPTION

The xmlbase awk library adds some basic facilities to the gawk-xml extension.

Automatic error reporting
The xmlbase library contains a rule that automatically invokes XmlCheckEr-
ror() at ENDFILE.

XmlEscape(str)
Returns the string argument with the basic XML metacharacters (<, >, &)
replaced by their predefined XML escape sequences.

XmlEscapeQuote(str)
Returns the string argument with all the XML metacharacters (<, >, &, ", ’)
replaced by their predefined XML escape sequences.

XmlWriteError(message)
Prints a formatted diagnostic message showing FILENAME, XMLROW, XML-
COL, XMLLEN and the string argument.

XmlCheckError()
If either XMLERROR or ERRNO have a non-null value, invokes XmlWriteEr-
ror() on it. XMLERROR takes precedence over ERRNO. If ERRNO is used
then it is cleared, to avoid duplicated error reports.

NOTES

The xmlbase library automatically loads the xml gawk extension.

LIMITATIONS

The error reporting facility may not suit everybody.

92 XML Processing With gawk

8.5 xmlcopy

NAME

xmlcopy - add token reconstruction facilities to gawk-xml.

USAGE

@include "xmlcopy"

result = XmlToken()

XmlCopy()

XmlSetAttribute(name, value)

XmlIgnoreAttribute(name)

DESCRIPTION

The xmlcopy awk library adds the ability to reconstruct the current XML token. The token

can be modified before reconstruction.

Token reconstruction

XmlToken()
Returns an XML string that represents the current token. The token is recon-
structed from the predefined variables XMLEVENT, XMLNAME, XMLATTR
and $0. They can have the original current token values or user modified ones.

XmlCopy()
Writes an XML string that represents the current token, as returned by Xml-
Token().

Token modification

XmlSetAttribute(name, value)
Adds or replaces the (name, value) entry in XMLATTR. Adds name to $0 if
not already in it.

XmlIgnoreAttribute(name)
Removes name from $0, so XmlToken() will ignore it. Keeps XMLATTR un-
changed..

NOTES

The xmlcopy library includes the xmlbase library. Its functionality is implicitly available.

LIMITATIONS

When an XML declaration is reconstructed, the advertised encoding may not match the
actual encoding.

Chapter 8: Reference of XML features 93

8.6 xmlsimple

NAME

xmlsimple - add facilities for writing simple one-line scripts with the gawk-xml extension,

and also simplify writing more complex scripts.

USAGE

@include "xmlsimple"

parentpath = XmlParent(path)

test = XmlMatch(path)

scopepath = XmlMatchScope(path)

ancestorpath = XmlMatchAttr(path, name, value, mode)

XmlGrep()

DESCRIPTION

The xmlsimple library facilitates writing simple one-line scripts based on the gawk-xml

extension. Also provides higher-level functions that simplify writing more complex scripts.

It is an alternative to the xmllib library. A key difference is that $0 is not changed, so

xmlsimple is compatible with awk code that relies on the gawk-xml core interface.

Short token variable names

To shorten simple scripts, xmlsimple provides two-letter named variables that duplicate
predefined token-related core variables:

XD Equivalent to XMLDECLARATION.

SD Equivalent to XMLSTARTDOCT.

ED Equivalent to XMLENDDOCT.

PI Equivalent to XMLPROCINST.

SE Equivalent to XMLSTARTELEM.

EE Equivalent to XMLENDELEM.

TX Equivalent to XMLCHARDATA.

SC Equivalent to XMLSTARTCDATA.

EC Equivalent to XMLENDCDATA.

CM Equivalent to XMLCOMMENT.

UP Equivalent to XMLUNPARSED.

EOI Equivalent to XMLENDDOCUMENT.

94 XML Processing With gawk

Collecting character data

Character data items between element tags are automatically collected in a single CHAR-
DATA variable. This feature simplifies processing text data interspersed with comments,
processing instructions or CDATA markup.

CHARDATA
Available at every XMLSTARTELEMENT or XMLENDELEMENT token.
Contains all the character data since the previous start- or end-element tag.

Whitespace handling

The XMLTRIM mode variable controls whether whitespace in the CHARDATA variable is
automatically trimmed or not. Possible values are:

XMLTRIM = 0
Keep all whitespace

XMLTRIM = 1 (default)
Discard leading and trailing whitespace, and collapse contiguous whitespace
characters into a single space char.

XMLTRIM = -1
Just collapse contiguous whitespace characters into a single space char. Keeps
the collapsed leading or trailing whitespace.

Record ancestors information

The ATTR array variable automatically keeps the attributes of every ancestor of the current
element, and of the element itself.

ATTR[path@attribute]
Contains the value of the specified attribute of the ancestor element at the given
path.

Example

While processing a /books/book/title element, ATTR["/books/book@on-loan"] contains

the name of the book loaner.

Path related functions

A fixed path is a slash delimited list of direct child elements (/name/name/...). A path
expression accepts also an asterisk (*) to match any name, and a double slash (//) to
represent a descendant at any level. An absolute path starts with a slash (path from the
root element). A relative path without a leading slash can start at any level (path from
some ancestor).

XmlParent(path)
Returns the path of the parent element. I.e., the path argument without the
last /name part. The path argument is optional. If not given the XMLPATH
is used.

XmlMatch(path)
Tests whether the current XMLPATH matches the path expression argument,
anchored at the end.

Chapter 8: Reference of XML features 95

XmlMatchScope(path)
Returns the XMLPATH prefix not matched by the matching path expression
argument. Returns a null value if there is no match.

XmlMatchAttr(path, name, value, mode)
Returns the path of the innermost ancestor that matches the path argument
and also has a name attribute with the given value. The mode argument is
optional. If non-null then the value is handled as a regular expression instead
of a fixed value.

Grep-like facilities

XmlGrep()
If invoked at the XMLSTARTELEM event, causes the whole element subtree
to be copied to the output.

NOTES

The xmlsimple library includes both the xmlbase and xmlcopy libraries. Their functionality

is implicitly available.

LIMITATIONS

The path related functions only operate on elements. Comments, processing instructions
or CDATA sections are not taken into account.

XmlGrep() cannot be used to copy tokens outside the root element (XML prologue or
epilogue).

96 XML Processing With gawk

8.7 xmltree

NAME

xmltree - DOM-like facilities for gawk-xml. Its status is experimental. May change in the

future.

USAGE

@include "xmltree"

XmlPrintElementStart(index)

XmlPrintElementEnd(index)

XmlPrintNodeText(index)

XmlPrintNodeTree(index)

n = XmlGetNodes(rootnode, path, nodeset)

value = XmlGetValue(rootnode, path)

DESCRIPTION

The xmltree awk library adds DOM-like facilities to the gawk-xml extension.

Automatic storage of the element tree

The xmlbase library contains rules that automatically store the document’s element tree in
memory. The tree contains a node for each:

• Element

• Attribute

• Text content fragment

Each node in the tree can be referenced by an integer node index. The root element

node has an index of 1. Nodes are stored in lexicographical order.

Processing the tree in the END clause

The stored tree is not fully available until the end of the input file. The intended way of

using the tree is to put all the processing code in the END clause.

Printing tree fragments

XmlPrintElementStart(index)
Prints the element’s start tag, including the attributes. The index argument
must point to an element node.

XmlPrintElementEnd(index)
Prints the element’s end tag. The index argument must point to an element
node.

XmlPrintNodeText(index)
Prints the text content of the node. The index argument must point to an
attribute or text fragment node.

Chapter 8: Reference of XML features 97

Selecting tree fragments

The xmltree library provides an XPath-like facility for querying or navigating the document
tree.

n = XmlGetNodes(rootnode, path, nodeset)
Populates de nodeset integer array argument with the indexes of the nodes
selected from the starting rootnode by the given path pattern. Returns the
number of selected nodes.

value = XmlGetValue(rootnode, path)
Returns the text content of the set of nodes selected from the starting rootnode
by the given path pattern. The content depends on the node kind:

Attribute node
The content is the attribute value.

Text fragment node
The content is the text fragment.

Element node
Concatenates the content of the descendant element and text frag-
ment nodes. Attributes are excluded from the result.

The path expression language

path A relative path from one node to one of its descendants is denoted by a sequence
of slash separated labels. The label of a child element is the element name. The
label of an attribute node is the attribute name prefixed by the "@" sign. The la-
bel of a text content node is the string "#text". The path from one node to itself
is an empty path. Examples: book/title, recipe/ingredient/@calories,
book/author/#text.

path pattern
A sequence of selection steps selector!condition!selector!condition....
Each step is a pair of contiguous "!" delimited fields of the expression.

selector Regular expression that will be matched against relative paths between nodes.

condition Like selectors, and may also have a trailing "/?" prefixed value pattern, also
given as a regular expression.

selection step
A selection step selects descendant-or-self nodes whose relative path matches
the selector, and in turn have some descendant-or-self node whose relative path
and text content match the condition.

Examples:

book! –> selects all books.

book!author –> selects all books that have an author.

book!author/?Kipling –> selects all books written by Kipling.

book!@onloan –> selects all books that are loaned.

book!@onloan!title! –> selects the titles of all books that are loaned.

98 XML Processing With gawk

NOTES

The xmltree library includes both the xmlbase and the xmlwrite libraries. Their functionality

is implicitly available.

LIMITATIONS

Currently only one XML input document is supported. And the stored node tree should
not be modified.

The selection facility can only be used for descendants of a root node. Selectors for
ascendant or sibling nodes are not supported.

Chapter 8: Reference of XML features 99

8.8 xmlwrite

NAME

xmlwrite - gawk facilities for writing XML fragments or whole documents.

USAGE

@include "xmlwrite"

xwopen(filename[, options])

xwclose()

xwdeclaration(version, encoding, standalone)

xwstartdoct(root, pubid, sysid)

xwenddoct()

xwprocinst(name, string)

xwcomment(comment)

xwstarttag(name)

xwattrib(name, value)

xwendtag(name)

xwtext(string)

xwstartcdata()

xwendcdata()

xwunparsed(string)

xwdoctype(root, pubid, sysid, declarations)

xwstyle(type, uri)

xwelement(name, content)

xwcdata(string)

xwcopy()

DESCRIPTION

The xmlwrite library facilitates writing a XML document serially, piece by piece. A whole

XML document can be composed this way. The composed document may be indented if

desired. xmlwrite takes care of some peculiarities of the XML standard, like metacharacters

escaping, whitespace handling, markup indentation, etc.

Output file and mode

xwopen(filename[, options])
Initializes output to the given file. The optional argument is an array of named
options:

100 XML Processing With gawk

options["INDENT"]
Indent step (-1 = no indent), default = 2.

options["QUOTE"]
Preferred quote character (’, "), default = (").

xwclose() Closes the current opened output file.

XML prologue

xwdeclaration(version, encoding, standalone)
Writes an XML declaration (<?xml ... ?>). All the arguments are optional.

xwstartdoct(root, pubid, sysid)
Writes the starting part of a DOCTYPE declaration (<!DOCTYPE ...). All the
arguments are optional.

Internal DOCTYPE declarations, if any, may be inserted by subsequent xwun-
parsed() calls.

xwenddoct()
Writes the closing mark of the DOCTYPE declaration (]>).

Processing Instructions and Comments

xwprocinst(name, string)
Prints a Processing Instruction with the given name and contents (<?name
string?>).

xwcomment(comment)
Prints a XML comment (<!--comment-->).

Elements and attributes

xwstarttag(name)
Prints the opening mark of an element start tag (<name ...>).

xwattrib(name, value)
Prints an attribute markup fragment (name="value"). Must be invoked imme-
diately after the xwstartag() call.

xwendtag(name)
Prints an element closing tag (</name>). If the element is empty, just closes its
collapsed markup (/>).

Character data

xwtext(string)
Writes the escaped text. If it is invoked inside a CDATA section, the text is
written unescaped.

xwstartcdata()
Writes the opening mark of a CDATA section (<![CDATA[).

xwendcdata()
Writes the closing mark of a CDATA section (]]>).

Chapter 8: Reference of XML features 101

Unparsed markup

xwunparsed(string)
Writes a text fragment literally. Can be used to directly insert special markup
fragments.

Higher level convenience functions

xwdoctype(root, pubid, sysid, declarations)
Writes a complete DOCTYPE declaration with a single call. All the arguments
are optional.

xwstyle(type, uri)
Writes a stylesheet processing instruction (<?xsl-stylesheet
type="text/type" href="uri"?>).

xwelement(name, content)
Writes a complete simple element markup with a single call. Attributes are not
supported. Nested child elements are not supported.

xwcdata(string)
Writes a complete CDATA section with a single call.

Integration with the XML extension

If the xmlwrite library and the gawk-xml extension are used together, then it is possible to
directly copy XML input markup.

xwcopy() Writes the markup fragment equivalent to the current XML input token. Should
be used instead of the XmlCopy() function provided by the xmlcopy library.

NOTES

xmlwrite is a standalone library that can be used independently of the gawk-xml extension

(except the xwcopy() function).

LIMITATIONS

Improper use of the provided functions may produce non-wellformed markup.

The whole output document must be written with the provided functions. Mixing xml-
write calls and direct print commands may produce corrupted markup.

It is not possible to write several output documents concurrently.

Chapter 9: Reference of Books and Links 103

9 Reference of Books and Links

9.1 Good Books

Here is a commented list of books for those who intend to learn more about XML and
AWK.

• The very first book about AWK was The AWK Programming Language
by Aho, Kernighan and Weinberger. More than 20 years after its initial
appearance, this book is still a highly appreciated source of information and
inspiration. Some readers refer to this book as TAPL (https://www.amazon.com/
AWK-Programming-Language-Alfred-Aho/dp/020107981X).

• TAPL was an expensive book and it was tied to the original AWK implementation that
came with AT&T’s Unix. When SunOS became popular, AWK’s reputation was dam-
aged by the way SunOS implemented the AWK interpreter (oawk and nawk). So there
was a need for an implementation with open source code, support by developers and an
appropriate documentation. The GNU Awk implementation is maintained by Arnold
Robbins, who also serves as the author of EAP3, the third edition of the GNU Awk
manual (http://www.oreilly.com/catalog/awkprog3/index.html). This inexpen-
sive book is published by O’Reilly, but it is also distributed with the source distribution
of GNU Awk. Along with this up-to-date source of information comes a reference card.
Unfortunately, the reference card is not part of O’Reilly’s book. No other publication
is so precise about the subtle differences between the POSIX standard, the original
AWK and GNU Awk.

• The success of other scripting languages in the aftermath of AWK’s success and the
rising of early GNU/Linux led to the misconception that AWK was being ”replaced” by
other languages. While stylish new scripting languages come and go every 5 years, AWK
will not disappear or be ”replaced”. AWK is mentioned in the Single UNIX Specifica-
tion (http://en.wikipedia.org/wiki/Single_UNIX_Specification) as one of the
mandatory utilities of a Unix operating system. Only one other scripting language
besides AWK enjoys this status as a ”canonical Unix scripting language”: the Bourne
Shell. Few readers will actually need it, but if you want to know the exact specifica-
tion of AWK, read the specification of POSIX AWK (http://pubs.opengroup.org/
onlinepubs/9699919799/utilities/awk.html).

• If you are just beginning to recognize the utility of AWK as a portable scripting lan-
guage, you should read Wikipedia’s AWK entry (http://en.wikipedia.org/wiki/
Awk) as an introduction, overview and dispatcher for further sources.

• Just like GNU Awk, XML is an offspring of standards that can be traced back to the
1970s. Some recommended reading has already been mentioned earlier (see Section 1.3
[Looking closer at the XML file], page 9). As a single source, we would recommend
the O’Reilly book XML in a Nutshell (http://www.oreilly.com/catalog/xmlnut3/
). Again, Wikipedia’s XML entry (http://en.wikipedia.org/wiki/Xml) provides a
quick overview, introduction and collection of links and sources.

https://www.amazon.com/AWK-Programming-Language-Alfred-Aho/dp/020107981X
https://www.amazon.com/AWK-Programming-Language-Alfred-Aho/dp/020107981X
http://www.oreilly.com/catalog/awkprog3/index.html
http://www.oreilly.com/catalog/awkprog3/index.html
http://en.wikipedia.org/wiki/Single_UNIX_Specification
http://en.wikipedia.org/wiki/Single_UNIX_Specification
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html
http://en.wikipedia.org/wiki/Awk
http://en.wikipedia.org/wiki/Awk
http://www.oreilly.com/catalog/xmlnut3/
http://www.oreilly.com/catalog/xmlnut3/
http://en.wikipedia.org/wiki/Xml

104 XML Processing With gawk

9.2 Links to the Internet

This section lists the URLs for various items discussed throughout this book.

• gawk-xml is based on Arnold Robbins’ GNU Awk (http://www.gnu.org/software/
gawk/gawk.html). Arnold’s distribution is the one true GNU Awk. GNU Awk is
meant to be a stable distribution, adhering to standards and used with many many
Unix operating systems.

• gawk-xml is a functional extension of GNU Awk. It is distributed as part of the
gawkextlib project (http://sourceforge.net/projects/gawkextlib/). The Source-
Forge project was initially named xmlgawk because original plans aimed at implement-
ing an XML extension only. Later, the name of the distribution was changed to xgawk
so that it reflected the emphasis on the extension, rather than on the XML parser.
And finally the project was renamed as gawkextlib to make clear that it is a library of
independent extensions.

• In Section 3.2 [Printing an outline of an XML file], page 20, we already mentioned
that gawk-xml’s way of handling XML data was designed with the SAX API in mind.
Other languages also have libraries implementing this API. To most developers, the
Java implementation is the canonical implementation of the SAX API. Have a look at
the chapter XML Processing with Java (http://www.corewebprogramming.com/PDF/
ch23.pdf) in the book Core Web Programming. You will find an implementation of the
script outline.awk that we presented in Figure 3.2. Comparing both implementations
will reveal the strengths and weaknesses of a script solution and a compiled solution.

• The XML standard’s exact specification (http://www.w3.org/TR/2004/
REC-xml-20040204/) is open to everyone. But it is incomprehensible for casual
users. A bit easier to consume and to digest is the Introduction to the Annotated
XML Specification (http://www.xml.com/axml/testaxml.htm). Beginners are often
struggling to gain an overview of all the optional and mandatory parts of an XML file.
They will appreciate the XML Syntax Quick Reference (http://www.mulberrytech.
com/quickref/XMLquickref.pdf). This two-page reference card was layed out in
a nice graphical form and is noteworthy for presenting an overview which does not
ignore the proper place of the DTD in the XML data.

http://www.gnu.org/software/gawk/gawk.html
http://www.gnu.org/software/gawk/gawk.html
http://sourceforge.net/projects/gawkextlib/
http://www.corewebprogramming.com/PDF/ch23.pdf
http://www.corewebprogramming.com/PDF/ch23.pdf
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.xml.com/axml/testaxml.htm
http://www.xml.com/axml/testaxml.htm
http://www.mulberrytech.com/quickref/XMLquickref.pdf
http://www.mulberrytech.com/quickref/XMLquickref.pdf

Appendix A: GNU Free Documentation License 105

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

106 XML Processing With gawk

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 107

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

108 XML Processing With gawk

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 109

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

110 XML Processing With gawk

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 111

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

112 XML Processing With gawk

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 113

Index

A
ASCII, tabbed . 44
Attribute . 9

B
Barnes & Noble Price Quote 56

C
CDATA, unescaped Character Data 84
Character Data . 10, 23
character encoding 10, 23, 24, 52, 83, 84
character set . 24
chmod . 5
comp.lang.awk, newsgroup on the Internet 43
comp.text.xml, newsgroup on the Internet . . 10, 43
Cygwin . 5, 48

D
database . 62
db_version.awk . 26
demo_pusher.awk . 28
DocBook . 6, 23, 27, 67, 70, 73
DOM, Document Object Model 1, 41, 50
dot . 67
dtd_generator.awk . 71
DTD, Document Type Definition . . . 10, 19, 26, 48,

70, 85, 104

E
Element . 10
Expat, XML parser with SAX-like API . . 1, 15, 20,

22, 88
extract_characters.awk . 23

F
FDL, GNU Free Documentation License 105

G
gawkextlib . 104
get_rss_feed.awk . 55
getXML . 15
getXMLEVENT.awk . 17
Graphviz, open source graph

drawing software . 67

H
HTML . 53
HTTP . 53, 56

J
Java . 104

L
LANG, environment variable 25, 84

M
max_depth.awk . 8
Microsoft Excel . 78
Microsoft Windows . 1, 5, 25
Mixed Content . 10
modify.awk . 52
modify.xml . 53

N
nawk . 15, 103
node_count.awk . 8

O
outline, Expat application 20
outline.awk . 20, 104
outline_dot.awk . 69
outline_puller.awk . 21

P
parser, recursive descent . 73, 78
POSIX . 11, 103
PostgreSQL . 62
PostScript . 67, 69
Processing Instruction . 10, 83

R
recursion . 7, 47, 73, 77
remote_data.xml . 51
RSS, Really Simple Syndication or

Rich Site Summary . 53

114 XML Processing With gawk

S
sample.xml . 64
SAX, Simple API for XML 20, 104
Schema . 10, 19, 57, 73, 78
soap_book_price_quote.awk 59
SOAP, Simple Object Access Protocol 56
SOAPscope. 56
Solaris . 15
SourceForge . 104
SQL . 62

T
Tag . 9
target, of Processing Instruction 83
testxml2pgsql.awk . 63
The Inquirer . 54

U
Unicode . 11, 24, 25, 77
Unix . 5, 103
US-ASCII . 25
UTF-16 . 24, 25
UTF-8 . 10, 24, 85

V
Valid . 10
validation . 19, 70

W
wc . 5
wc.awk . 5
Well-Formed . 10, 82
well_formed.awk . 19

X
xgawk . 104
XML technology . 10
XMLATTR . . 20, 21, 22, 26, 28, 44, 46, 47, 65, 69, 71,

81, 82, 85
XMLATTR["ENCODING"] 25, 26, 28, 52, 81
XMLATTR["INTERNAL_SUBSET"] 26, 28
XMLATTR["PUBLIC"] . 26, 28, 85
XMLATTR["STANDALONE"] 26, 28, 81
XMLATTR["SYSTEM"] . 26, 28, 85
XMLATTR["VERSION"] 26, 28, 81
XMLBooster . 73
XMLCHARDATA . 28, 83
XMLCHARSET 23, 25, 28, 84, 85, 86
XMLCOL . 28, 86
XMLCOMMENT . 28, 84
XMLDECLARATION . 25, 28, 81, 82
XMLDEPTH . 28, 69, 71, 86
XMLENDCDATA . 28, 84
XMLENDDOCT . 28, 86
XMLENDDOCUMENT . 28, 87
XMLENDELEM . 8, 28, 82, 83
XMLERROR . 19, 28, 86
XMLEVENT . 22, 28, 65, 87
xmlgawk . 104
XMLLEN . 28, 86
xmllint . 19
XMLMODE . 28, 81
XMLNAME . 28, 87
xmlparse.awk . 11
XMLPATH . 28, 87
XMLPROCINST . 28, 83
XMLROW . 28, 86
XMLSTARTCDATA . 28, 84
XMLSTARTDOCT . 28, 82, 85, 86
XMLSTARTELEM . 8, 28, 82
XMLTV . 44
XMLUNPARSED . 28, 85, 86
XSL . 5, 41, 44, 45, 47, 50
xsv . 19

Y
Yahoo . 56

	Preface
	Foreword to Edition 0.3
	Foreword to Edition 1.2

	1 AWK and XML Concepts
	How does XML fit into AWK's execution model ?
	How to traverse the tree with gawk
	Looking closer at the XML file

	2 Reading XML Data with POSIX AWK
	Steve Coile's xmlparse.awk script
	Jan Weber's getXML script
	A portable subset of gawk-xml
	Converting a script from gawk-xml into portable subset
	Converting a script from portable subset into gawk-xml

	3 XML Core Language Extensions of gawk
	Checking for well-formedness
	Printing an outline of an XML file
	Pulling data out of an XML file
	Character data and encoding of character sets
	Dealing with DTDs
	Sorting out all kinds of data from an XML file

	4 Some Convenience with the xmllib library
	Introduction Examples
	Main features
	Character Data (CDATA)
	Start- and End-elements (SE, EE, PATH, ATTR[])
	Comments (CM)
	Processing Instructions (PI)
	Real Character Data (XmlCDATA)
	grep function
	XmlStartElement and XmlEndElement functions
	XmlPathTail function
	XmlTraceAttr function
	Simple String manipulation functions
	Minor Issues

	Usage of xmllib.awk
	Ad hoc Queries (grep-like tools)
	Formatter and Converter (sed-like tools)
	Comparison to XSLT

	5 DOM-like access with the xmltree library
	6 Problems from the newsgroups comp.text.xml and comp.lang.awk
	Extract the elements where i="Y"
	Convert XMLTV file to tabbed ASCII
	Finding the minimum value of a set of data
	Updating DTD to agree with its use in doc's
	Working with XML paths

	7 Some Advanced Applications
	Copying and Modifying with the xmlcopy.awk library script
	Reading an RSS news feed
	Using a service via SOAP
	Loading XML data into PostgreSQL
	Converting XML data into tree drawings
	Generating a DTD from a sample file
	Generating a recursive descent parser from a sample file
	A parser for Microsoft Excel's XML file format

	8 Reference of XML features
	XML features built into the gawk interpreter
	XMLDECLARATION: integer indicates begin of document
	XMLMODE: integer for switching on XML processing
	XMLSTARTELEM: string holds tag upon entering element
	XMLATTR: array holds attribute names and values
	XMLENDELEM: string holds tag upon leaving element
	XMLCHARDATA: string holds character data
	XMLPROCINST: string holds processing instruction target
	XMLCOMMENT: string holds comment
	XMLSTARTCDATA: integer indicates begin of CDATA
	XMLENDCDATA: integer indicates end of CDATA
	LANG: env variable holds default character encoding
	XMLCHARSET: string holds current character set
	XMLSTARTDOCT: root tag name indicates begin of DTD
	XMLENDDOCT: integer indicates end of DTD
	XMLUNPARSED: string holds unparsed characters
	XMLERROR: string holds textual error description
	XMLROW: integer holds current row of parsed item
	XMLCOL: integer holds current column of parsed item
	XMLLEN: integer holds length of parsed item
	XMLDEPTH: integer holds nesting depth of elements
	XMLPATH: string holds nested tags of parsed elements
	XMLENDDOCUMENT: integer indicates end of XML data
	XMLEVENT: string holds name of event
	XMLNAME: string holds name assigned to XMLEVENT

	gawk-xml Core Language Interface Summary
	Verbose Interface - One dedicated predefined variable for each event class: XMLeventname
	Concise Interface - Reduced set of variables shared by all events

	xmllib
	xmlbase
	NAME
	USAGE
	DESCRIPTION
	NOTES
	LIMITATIONS

	xmlcopy
	NAME
	USAGE
	DESCRIPTION
	Token reconstruction
	Token modification

	NOTES
	LIMITATIONS

	xmlsimple
	NAME
	USAGE
	DESCRIPTION
	Short token variable names
	Collecting character data
	Whitespace handling
	Record ancestors information
	Path related functions
	Grep-like facilities

	NOTES
	LIMITATIONS

	xmltree
	NAME
	USAGE
	DESCRIPTION
	Automatic storage of the element tree
	Processing the tree in the END clause
	Printing tree fragments
	Selecting tree fragments
	The path expression language

	NOTES
	LIMITATIONS

	xmlwrite
	NAME
	USAGE
	DESCRIPTION
	Output file and mode
	XML prologue
	Processing Instructions and Comments
	Elements and attributes
	Character data
	Unparsed markup
	Higher level convenience functions
	Integration with the XML extension

	NOTES
	LIMITATIONS

	9 Reference of Books and Links
	Good Books
	Links to the Internet

	A GNU Free Documentation License
	Index

